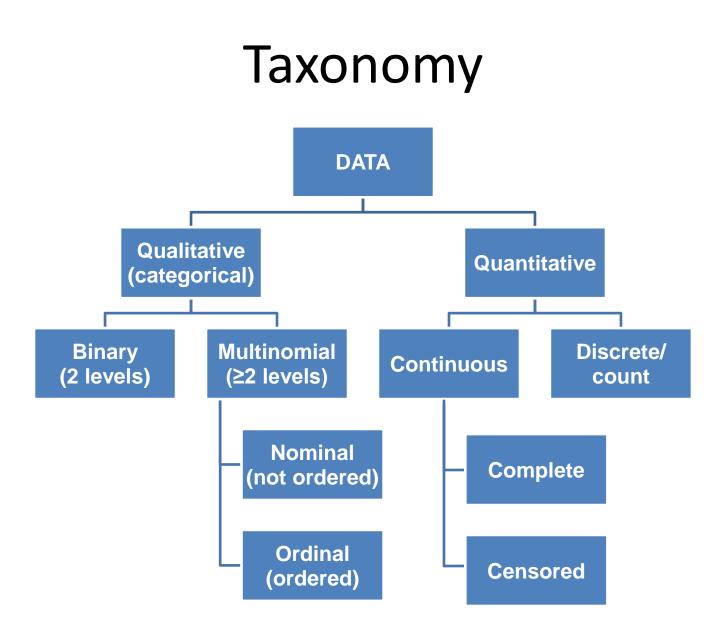
Introduction to Biostatistics

Amylou Dueck, PhD Rare Disease Scholars Program Sept 7, 2016

- Quantitative variable: a variable that can only be recorded using a number (a variable in which taking a mean makes sense)
- **Examples:** BMI, height, blood pressure, number of pregnancies, number of hospitalizations, days of survival
- Descriptive statistics: mean, standard deviation, median, inter-quartile range, range, histogram, box plot (special care needed for censored variables)

- Quantitative variable: a variable that can only be recorded using a number (a variable in which taking a mean makes sense) Continuous variables
- Examples: <u>BMI, height, blood pressure</u>, number of pregnancies, number of hospitalizations, days of survival
- Descriptive statistics: mean, standard deviation, median, inter-quartile range, range, histogram, box plot (special care needed for censored variables)

- Quantitative variable: a variable that can only be recorded using a number (a variable in which taking a mean makes sense)
- Examples: BMI, height, blood pressure, <u>number</u> of pregnancies, number of hospitalizations, days of survival
- Descriptive statistics: mean, standard deviation, median, inter-quartile range, range, histogram, box plot (special care needed for censored variables)


- Quantitative variable: a variable that can only be recorded using a number (a variable in which taking a mean makes sense)
- Descriptive statistics: mean, standard deviation, median, inter-quartile range, range, histogram, box plot (special care needed for censored variables)

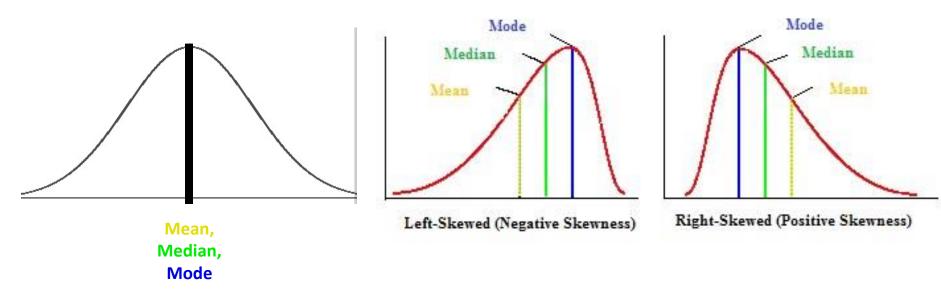
- Qualitative (or categorical) variable: a variable that describes a quality or attribute of the individual
- Example: Histologic stage, gender, occupation
- **Descriptive statistics:** frequencies, relative frequencies, bar chart, pie chart

- Qualitative (or categorical) variable: a variable that describes a quality or attribute of the individual
- Example: <u>Histologic stage</u>, gender, occupation
- **Descriptive statistics:** frequencies, relative frequencies, bar chart, pie chart

- Qualitative (or categorical) variable: a variable that describes a quality or attribute of the individual
- Example: Histologic stage, gender, occupation
- **Descriptive statistics:** frequencies, relative frequencies, bar chart, pie chart

- Qualitative (or categorical) variable: a variable that describes a quality or attribute of the individual
- Example: Histologic stage, gender, occupation
- **Descriptive statistics:** frequencies, relative frequencies, bar chart, pie chart

Summarizing Quantitative Data (complete continuous or discrete data)


- Mean: Simple average
- Standard deviation: Measure of how spread out the data are (square root of the "almost average" [use *n*-1 instead of *n*] squared deviation from the mean)
- Median: Middle of the ordered values
- Range: Largest and smallest value

Example

- Donations to ASH Scholars in the amounts of
 - \$20, \$20, \$10, \$30, \$40
 - Sum of these 5 donations is \$120
- Mean is \$120/5 = \$24
- Sum of squared deviations from mean = (\$20-\$24)² + (\$20-\$24)² + (\$10-\$24)² + (\$30-\$24)² + (\$40-\$24)² = \$520
- SD = sqrt (\$520 / [5-1]) = \$11.40
- Ordered values: \$10, \$20, \$20, \$30, \$40
- Median = \$20
- Range = \$10 to \$40

Mean or Median?

- If data are **symmetric**, mean & median in same place
- If data are **skewed**, mean & median in different places

• Also, mean is sensitive to outlying values!

Example

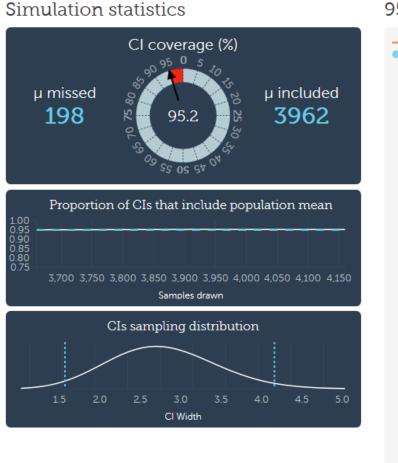
- Donations to ASH Scholars in the amounts of – \$20, \$20, \$10, \$30, \$40, \$1,100
- Mean is **\$203.33**
- SD is \$439.39
- Median is \$25 (average of the two middle values)
- Range = \$10 to \$1,100
- Mean or median?

Point Estimates

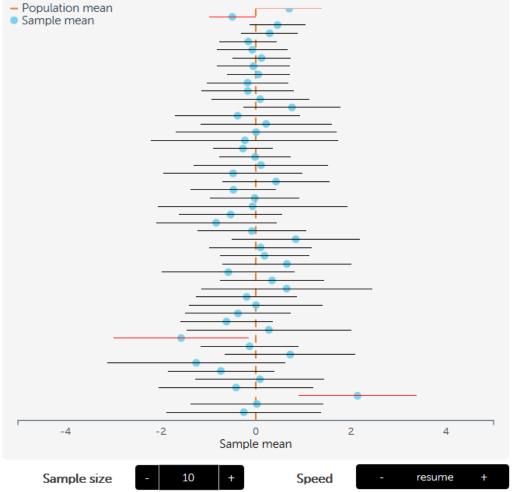
- Point estimate: a single value given as an estimate of a parameter of a population (thanks, Google!)
- **Example:** Mean of a sample for a complete continuous variable is a point estimate of the true population mean (sample mean estimates the "location" or "center" for the given variable)

Confidence Intervals

- We need more information than just a point estimate!
- **Confidence interval:** provides a range of plausible values for the population mean
- We characterize confidence intervals by the confidence level (%)
 - Traditionally, 90%, 95%, or 99% confidence intervals are constructed


N=1000 subjects: N=10 subjects: N=100 subjects: Mean weight = 141.5 lb Mean weight = 141.5 lb Mean weight = 141.5 lb SD = 30 lbSD = 30 lbSD = 30 lb95% CI: 139.6 - 143.4 lb 95% CI: 122.9 - 160.1 lb 95% CI: 135.6 - 147.4 lb

https://www.mccallum-layton.co.uk/tools/statistic-calculators/confidence-intervalfor-mean-calculator/#confidence-interval-for-mean-calculator


Confidence Intervals

- What does the confidence level mean?
 - (1) Take a sample of size *n* from the population
 - (2) Compute the sample mean
 - (3) Construct a 95% confidence interval
 - (4) Repeat (1)-(3) a thousand times
 - 95% of the confidence intervals will contain the true population mean
 - 5% of the confidence intervals will not
 - Nice visualization: <u>http://rpsychologist.com/d3/CI/</u>

Slide me

95% confidence intervals

About the visualization

Some say that a shift from hypothesis testing to confidence intervals and estimation will lead to fewer statistical misinterpretations.

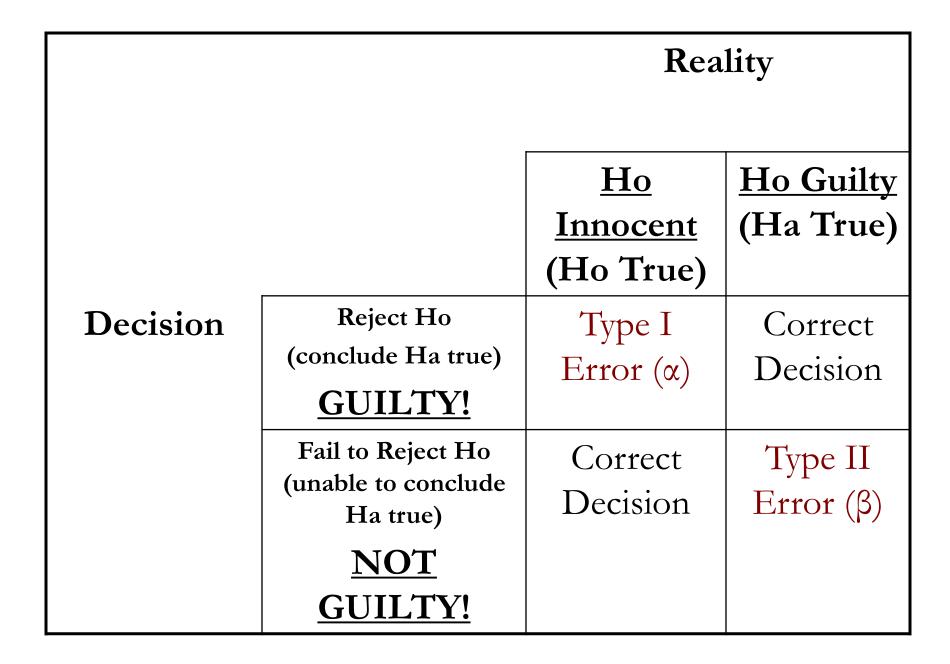
General Properties of Confidence Intervals

• As sample size gets bigger, ...

... confidence interval gets narrower – Narrowing in on your target!

• As confidence level gets larger, ...

... confidence interval gets wider


– To be more confident, you have to include more real estate in your interval!

Hypothesis Testing and P-values

- Ho = null hypothesis
 - Usually "no difference between groups"
- Ha = alternative hypothesis
 - Usually "difference between groups" (this is what you are trying to show)
- (1) Assume Ho is true
- (2) Collect a sample of data
- (3) Figure out the likelihood that the data you observed occurred under Ho (this is the p-value)
- (4) If small p-value (≤0.05), data are unlikely to occur under Ho, so conclude Ha must be true
- (5) If large p-value (>0.05), date are **reasonably likely** to occur under Ho, so **do not reject Ho (unable to conclude Ha is true)**

Alpha and Power

- Alpha = Type I error = probability of declaring Ha to be true when Ho is really true
- Beta = Type II error = probability of not rejecting Ho (not concluding Ha) when Ha is really true
- Power = 1-beta = probability of concluding Ha when Ha is really true

Sample Size Calculation

- Which is worse Type I or Type II error?
 Type I error!
- We construct our tests to ensure a low probability of this error
 - Traditionally 0.05 (maybe 0.10 or 0.20 for ph II)
 - Two-sided (maybe one-sided for ph II)
- Then choose a sample size ("evidence") to ensure acceptable power (probability of "conviction")

Sample Size Calculation

- We expect the mean QOL of two equally sized groups to be **6** and **7**
- We also expect the standard deviation of the QOL scores to be **1.67**
- Set alpha=0.05 (two-sided)

Power	Sample Size	
80%	44 per group (88 total)*	
85%	51 per group (102 total)*	
90%	59 per group (118 total)*	
http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html		*Consider adding patients to allow for dropouts!

Confidence Intervals and Hypothesis Testing

- If the 95% confidence interval does NOT contain the null hypothesis (Ho), then you can reject Ho!
- Example: Cox proportional hazards model (of survival) with two groups, Ho is hazard ratio = 1 (ie, the risk of death is the same in both groups).
 - 95% CI = [1.4, 2.6], then we can reject Ho and conclude that there is a difference between groups!
 - 95% CI = [0.8 1.9], then we are not able to reject Ho and we conclude that there is not enough evidence to conclude that there is a difference between groups.

What Type of Analysis Do I Use?

- Depends on the type of data you have
- Depends on how may groups you have

Which method should I use?

	One Group	Binary Predictor: 2 Independent Samples	Binary Predictor: 2 Paired/Matched Samples	Continuous Predictor & Multiple Predictors
<u>Continuous</u> <u>Outcome</u>	<u>t-test & CI</u> <u>Wicoxon's signed</u> <u>rank test</u>	<u>2-sample t-test & CI</u> <u>Wilcoxon's rank sum test</u>	Paired t-test & CI Wilcoxon's signed rank test	Linear regression & <u>ANOVA</u>
<u>Binary or</u> <u>Categorical</u> <u>Outcome</u>	<u>Z test & CI</u> <u>Exact Binomial</u> <u>test</u>	Z test & Chi-squared test Relative risk & Cl Odds ratio & Cl Fisher's exact test	<u>McNemar's test</u> McNemar's odds ratio & CI <u>Sign test</u>	Logistic regression
Time-to-Event Outcome	<u>Kaplan-Meier</u> <u>curve</u>	Kaplan-Meier curve & logrank test	Not covered within this site: see Other Regression Topics	Cox regression

	Assessing Agreement Without a Gold Standard	Assessing Agreement With a Gold Standard
Assessing	<u>Kappa</u>	Sensitivity, specificity, positive & negative predictive values, ROC Curves
<u>Agreement</u>	Bland-Altman	McNemar's test & the sign test

Parametric vs Nonparametric

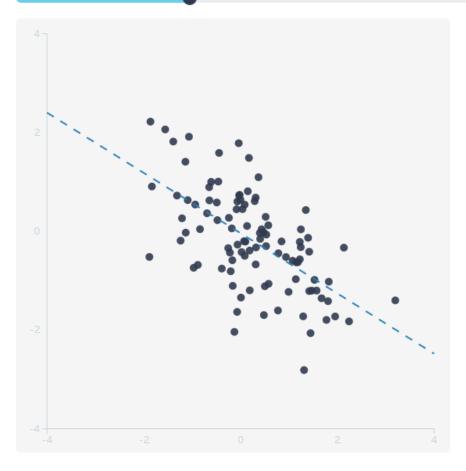
- **Parametric:** Rely on data following a particular distribution (eg, that data are normally distributed like a bell-shaped curve)
 - Thankfully, due to the central limit theorem, with a large enough sample, these assumptions are reasonable in most circumstances!
- **Non-parametric:** Make no or few assumptions about the underlying distribution (usually rely on rank order of data values)
 - Non-parametric statistics are generally used with small sample sizes and generally have less power than the corresponding parametric procedure (double whammy!)

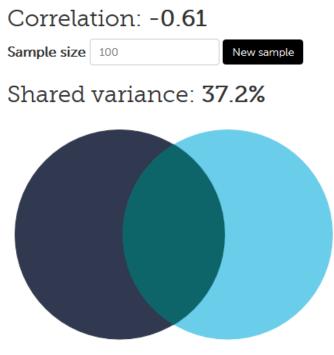
Parametric vs Nonparametric

Parametric	Non-parametric
Two-sample t-test	Wilcoxon Rank Sum Test (aka, Mann- Whitney U Test)
ANOVA	Kruskal-Wallis
Pearson Correlation	Spearman Correlation

Correlation

- A measure of association between two continuous variables
- **Example:** Years of education and annual income are positively correlated (ie, as years of education increases, annual income increases)
- **Example:** Years of education and years in jail are negatively correlated (ie, as the years of education increases, years in jail decreases)

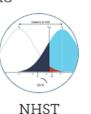

Correlation


- **Parametric =** Pearson correlation
 - Measures how closely pairs of values fall on a straight line (graphically)
 - Range: -1 to 1
 - Negative correlation = variables moving in opposite directions
 - Positive correlation = variables are moving in the same direction
 - The closer the value gets to -1 or 1, the stronger the correlation
 - Software typically produces p-values for Pearson correlations
 - Ho: Correlation = 0 (ie, testing for no correlation)
 - P-value ≤0.05 means that there is significant non-zero correlation (not that there is strong correlation!)
- **Non-parametric =** Spearman correlation

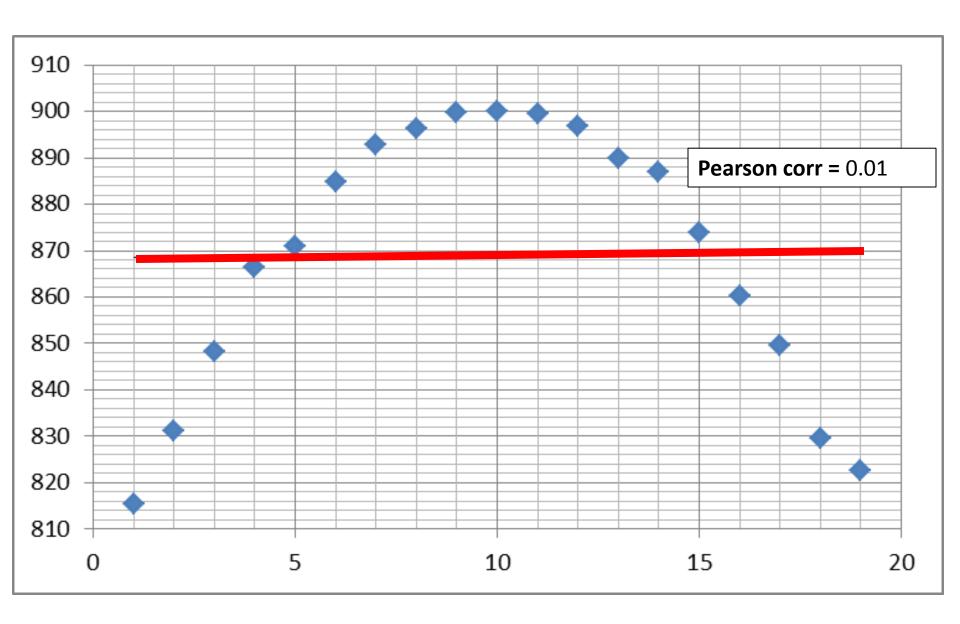
outliers.

Slide me

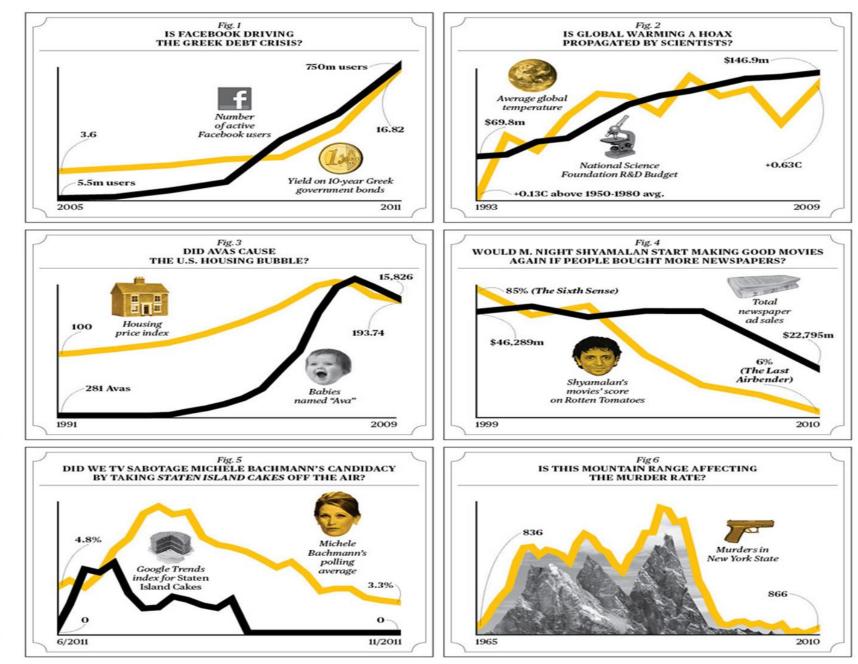
http://rpsychologist.com/d3/correlation/



More visualizations



Cohen's d



Suggestions

Have any suggestion? Send them to me, my contact info can be found here.

CORRELATION DOES NOT IMPLY CAUSATION!!!

Statistical vs Clinical Significance P-value is not the whole story!

 Does it make sense to adopt a therapeutic agent because the p-value is <u>0.048</u> and at the same time ignore another therapeutic agent because the p-value is <u>0.052</u>?

– These two results are entirely consistent!

- A very large study may result in a very small p-value but a small magnitude of effect
- P-value gives no indication about the clinical importance of the observed association

It's Official:

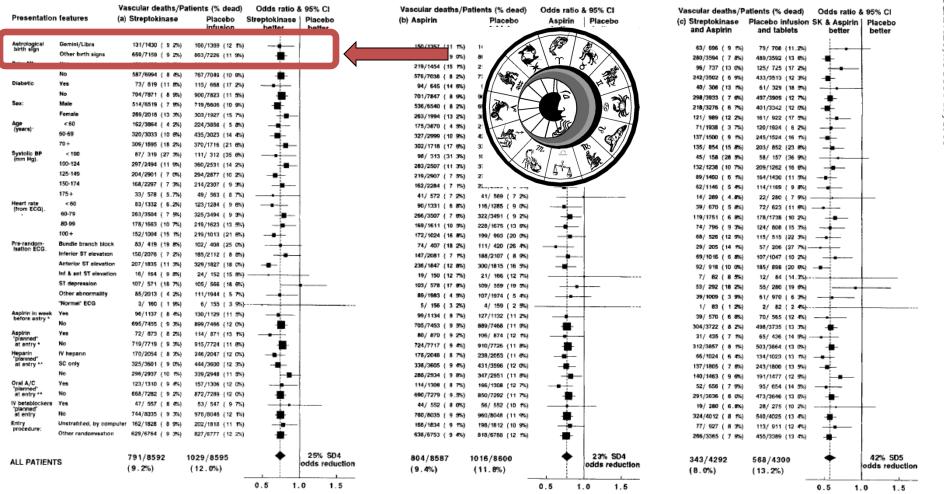
Bacon and Sausage Cause Cancer

(and are as Dangerous as Cigarettes)

EatDrinkBetter.com

Is bacon really as bad as smoking?

- In terms of statistical evidence, YES!
- In terms of clinical significance, NO!
- Smoking increases your <u>relative risk</u> of lung cancer by 2500%
- Eating two slices of bacon per day increases your <u>relative risk</u> of colorectal cancer by 18%
- Lifetime <u>(absolute) risk</u> of colorectal cancer increases from about 5% to 6%


Top 3 Perils of Statistical Analysis

- Multiplicity
 - Problem behind multiple endpoints, subgroup analysis, interim analysis, cutpoint determination,...
- Missing data
- Multivariate regression

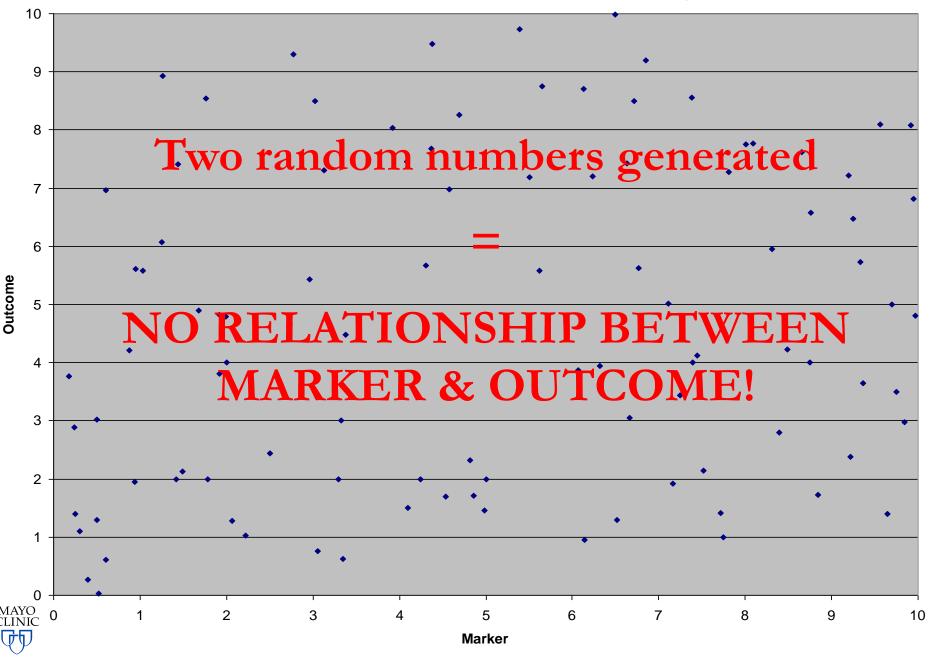
Multiplicity

- **Problem:** "Torture numbers, and they'll confess to anything."
 - Each test has a type I error rate of 5%, but when you perform multiple tests, the type I error rate overall can be much greater than 5%!

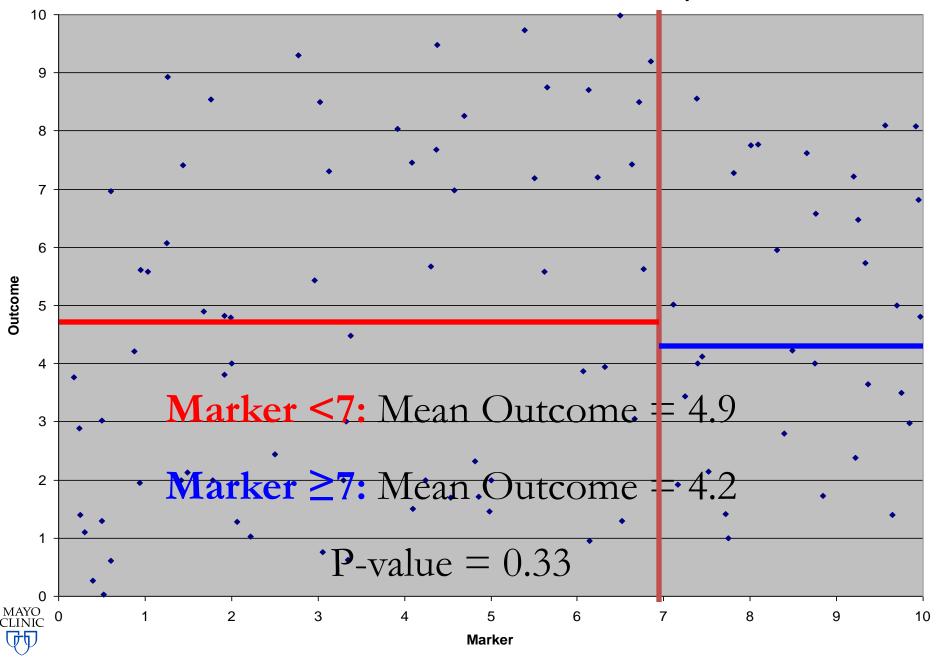
Subgroup Example (Lancet 1988, 2[8607]:349-360)

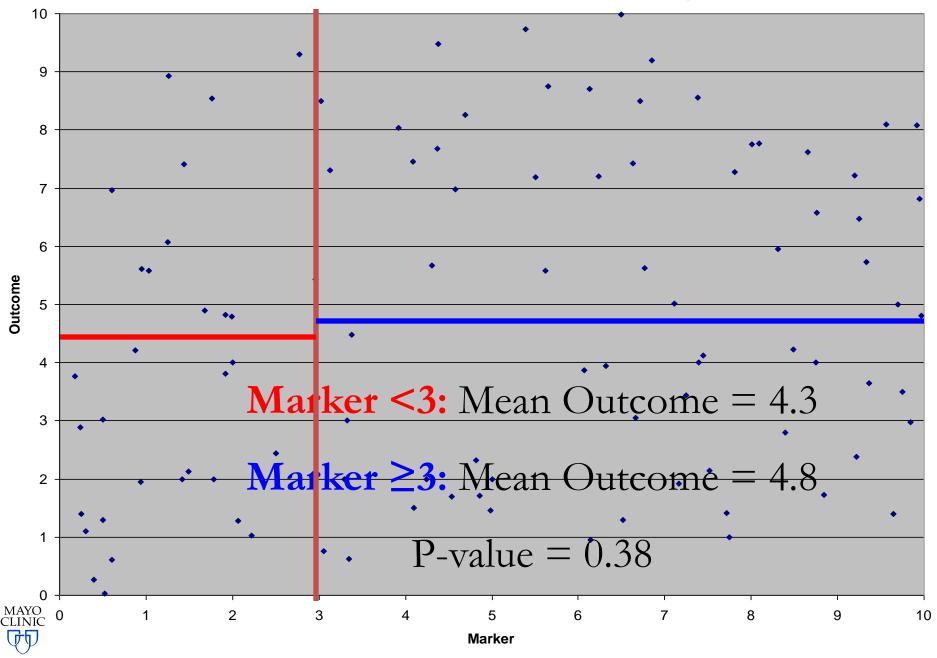
Fig 5-Subgroup analyses of the odds of vascular death in days 0-35.

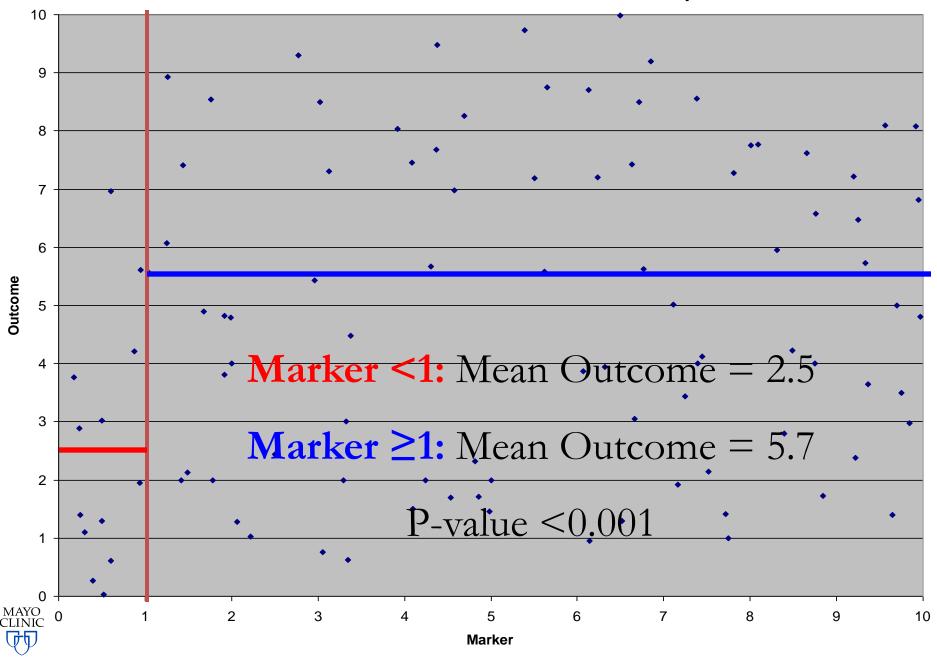
Square sizes⁶ and 95% confidence intervals are as in fig 3. Asterisks denote subsidiary analyses that were prespecified in the protocol for aspirin (* and **) or for streptokinase (**). (The sum of the 26 χ -squared test statistics for heterogeneity in the 26 different non-astrological subgroup analyses in fig 5(a) and 5(b) was 58.5 on 50 degrees of freedom, NS. If no real heterogeneity of effect existed then about 1 or 2 of these 26 heterogeneity tests would be expected to yield a p <0.05 result by chance alone, and in fact only the 1 for aspirin and previous MI did so: all other heterogeneity tests, including that for streptokinase and ECG, were p > 0.05.)


Multiple Testing Example (Bennett, Neuroimage 2009, 47[Suppl 1]:S125)

- Statistically significant difference in emotional responses when presenting different human faces to a subject.
- The subject being a salmon.
- A <u>dead</u> salmon to be particular.


GLM RESULTS


Cut Point Determination - Example


Cut Point Determination - Example

Cut Point Determination - Example

Cut Point Determination - Example

PLOT YOUR DATA!!!!

World's Most Accurate Pie Chart

Missing Data

- Problem: Less data = less power, and missingness can be "meaningful"!
 - What does the missing data tell us?
- **Example:** Fatigued patients may be the least likely to fill out a fatigue survey
 - Complete data: 1,4,6,5,2,3,3,4,6,7 (mean = 4.1)
 - Actual data (missing is random): 1,X,6,5,2,X,3,4,X,7 (mean = 4.0)
 - Actual data (three worst fatigue scores missing): 1,4,X,5,2,3,3,4,X,X (mean = 3.1)
- Not just a problem with survey data can be an issue with clinical data as well!
- Rigorous data collection a must! (statistical analysis can only "fix" so many problems)

Multivariate Regression

- **Problem:** Art more than science
- Need to understand relationships among ALL your variables to properly interpret a multivariate model
- Prediction models require validation (minimum internal validation; better external validation; best external validation on multiple datasets)
 - Model selection picks the model which is best for YOUR data and may not extend to another dataset
- Example
 - Dependent variable: oxygen saturation
 - Possible independent variables: age, weight, run time, resting pulse, running pulse, maximum pulse
- MANY POSSIBLE "MODELS"

Number in Model	R-Square	Variables					
lviodei 1	0 7424	runtime					
1		rstpulse					
1		runpulse					
1	0.0928	•					
1		maxpulse					
1	0.0265	•					
		·····					
2	0.7642	runtime	age				
2	0.7614	runtime	runpulse				
2	0.7452	runtime	maxpulse				
2	0.7449	runtime	weight				
2	0.7435	runtime	rstpulse				
3		runtime	age	runpulse			
3		runtime	runpulse	maxpulse			
3		runtime	age	maxpulse			
3		runtime	age	weight			
3		runtime	age	rstpulse			
3		runtime	runpulse	rstpulse			
3		runtime	weight	runpulse			
3		runtime	weight	maxpulse			
3		runtime	maxpulse	rstpulse			Which model should you
3	0.7451	runtime	weight	rstpulse			•
4	0.8368	runtime	age	runpulse	maxpulse)	pick? Here are 5 models
4	0.8165	runtime	age	weight	runpulse		(with 4 variables each) which
4	0.8158	runtime	weight	runpulse	maxpulse		(with + variables cach) which
4	0.8117	runtime	age	runpulse	rstpulse		explain >80% of the
4		runtime	runpulse	maxpulse		ノ	•
4		runtime	age	weight	maxpulse		variability in oxygen
4		runtime	age	maxpulse	•		saturation!
4		runtime	age	weight	rstpulse		saturation:
4		runtime	weight	runpulse	rstpulse		
4	0.7462	runtime	weight	maxpulse	rstpulse		
5	0 848	runtime	age	weight	runpulse	ma	axpulse
5		runtime	age	runpulse	maxpulse		pulse
5		runtime	age	weight	runpulse		pulse
5		runtime	weight	runpulse	maxpulse		
5		runtime	age	weight	maxpulse		
5	0.5541		weight	runpulse	maxpulse		•
6	0.8487	runtime	age	weight	runpulse	ma	axpulse rstpulse

MAYO CLINIC

Multivariate Regression

- Univariate:
 - Running pulse: p=0.02
 - Running time: p<0.001
 - Age: p=0.10
 - Weight: p=0.38
- Multivariate Model #1:
 - Running pulse: p=0.15
 - Running time: p<0.001
- Multivariate Model #2:
 - Running pulse: p=0.002
 - Age: p=0.003
 - Weight: p=0.23

Running pulse not related to oxygen saturation?

Not according to this model!

Results of the model are dependent on what's in the model!

I have no money for a statistician. \$\$\$ What do I do?

- Core funding to support statistical analysis
 Cancer center support grant, CTSA grant
- Institutional/departmental small grants
- Ask your department chair (discretionary dollars)
- Contact your statistician he/she might be aware of other internal funding opportunities

DOs and DON'Ts of working with a statistician

DON'T:

- Start any request with: This should only take a few minutes...
- End any request with: ...and my abstract/submission deadline is tomorrow.
- Ask for just a p-value
- Collect data in Excel
- Send updated data without consulting your statistician
- Ask for analysis and then wait a year before getting around to writing the manuscript (and then ask for updated analysis)
- Do the analysis yourself and ask your statistician to fill in the statistical methods section
- Omit your statistician from the author list and then ask your statistician for help on addressing reviewer comments

There is no such thing as a statistical emergency, only poor planning!

DOs and DON'Ts of working with a statistician

DO:

- Contact your statistician as early as possible in the research process (<u>BEFORE</u> COLLECTING DATA) – if you wait until after, it's often too late!
- Give your statistician as much time as possible on all requests (min 4 weeks)
- Communicate with your statistician about timelines & budgets
- Communicate with your statistician about any changes to data or the project
- Send the IRB number for all requests
- Prioritize analyses (outline your abstract, create mock tables before you request analyses)
- Include <u>reasonable</u> effort on all grants for your statistician
- Include your statistician as a coauthor (preferably 2nd author) on all abstracts and papers (acknowledgement section is not enough)

Treat your statistician as an integral member of your research team!

QUESTIONS?

THANKS! dueck@mayo.edu @BiostatGirl