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Abstract Molecular imaging with positron emitting tomog-
raphy (PET) is widely accepted as an essential part of the
diagnosis and evaluation of neoplastic and non-neoplastic
disease processes. PET has expanded its role from the
research domain into clinical application for oncology,
cardiology and neuropsychiatry. More recently, PET is being
used as a clinical molecular imaging tool in pediatric neuro-
imaging. PET is considered an accurate and noninvasive
method to study brain activity and to understand pediatric
neurological disease processes. In this review, specific
examples of the clinical use of PET are given with respect to
pediatric neuroimaging. The current use of co-registration of
PET with MR imaging is exemplified in regard to pediatric
epilepsy. The current use of PET/CT in the evaluation of head
and neck lymphoma and pediatric brain tumors is also
reviewed. Emerging technologies including PET/MRI and
neuroreceptor imaging are discussed.
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Introduction

Positron emission tomography (PET) imaging is based on the
detection of photons that arise from the decay of injected
radiotracers. With the ability to image various radiotracers in
the brain, it is possible to follow molecular interactions and
pathways. PET scanning can provide assessment of physio-
logical and pathophysiological processes and can measure
chemical changes that occur before they are visible on CTand
MRI. PET does have some disadvantages including radiation
exposure (comparable to CT), limited availability and
possible need for sedation in some children. In this review,
selected topics that are relevant to the use of PET imaging in
pediatric neuroimaging are discussed including quantitation
of PET, brain development and PET, PET imaging in epilepsy
(including image co-registration with MR) and PET imaging
in pediatric neuro-oncology (including PET/CT of head and
neck lymphoma and pediatric brain tumors). Emerging
applications of PET including combined PET/MR imaging
and neuroreceptor imaging are discussed at the end of the
review.

Quantification in PET imaging

One of the major advantages of PET is its ability to quantify
radioactivity concentration within a given region of interest.
To provide meaningful information on available receptor
binding sites or biochemical processes, the tracer activity and
its distribution need to be analyzed quantitatively. There are
three categories of methods in analyzing data: (1) qualitative
analysis (visual assessment), (2) semiquantitative assessment
such as standardized uptake value (SUV) and lesion-to-
background (L:B) ratio and (3) absolute quantitative analysis
using nonlinear regression, Patlak graphical analysis and
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simplified quantitative methods [1]. Qualitative analysis
requires minimal effort with least accuracy, whereas an
absolute quantificationmethod requires compartmental kinetic
modeling to measure the individual rate constant based on data
from dynamic image acquisition and serial blood sampling.
This method is complex and time-consuming and therefore is
impractical in most clinical settings.

SUV is the most commonly used semi-quantitative
parameter in clinical fluorodeoxyglucose (FDG) PET
studies. SUV is defined by lesion concentration of tracer
per injected dose of normalized patient body weight
multiplied by a decay factor.

SUV ¼ Tissue activity concentration MBq=mlð Þ
Injected dose MBq=mlð Þ=Body weight gð Þ � Decay factor of 18 Fð Þ

Compared to complicated and time-consuming kinetic
modeling, the SUV calculation is simple without any need
for arterial blood sampling and faster without dynamic
image acquisition. It is also known that tissue SUV has a
linear relationship with the rate of glucose metabolism
measured by kinetic modeling with high correlation
coefficients of 0.91 and 0.84, respectively [2, 3]. Many
factors affect the outcome of SUV. These factors can be
broadly categorized as technical, biological and physical.
Technical errors include relative calibration between PET
scanner and dose calibrator [4, 5], residual activity in
syringe or administration system, incorrect decay correction
resulting from inaccurate synchronization of PET camera
and dose calibrator, and incorrect time interval between
injection and calibration time [6]. Biological errors include
blood glucose level [7–9], uptake period [10], inflammation
process near tumor [11], and patient motion or breathing
[12]. Physical errors include scan-acquisition parameter
affecting signal-to-noise ratio [5], image-reconstruction
parameter such as resolution and partial-volume effect [5],
size and type of region of interest (ROI) [5, 6], normalization
factor for SUV such as body weight, body surface area,
mean body weight [7], blood glucose level correction [7–9]
and overestimation of attenuation and SUV in the presence
of a contrast agent.

Although many factors have a relatively small effect
(<15%) on SUV outcome, on average the sum of many
factors can make significant difference in SUV outcome
[6]. Therefore, standardization of protocol is critical for
an accurate and reproducible SUV measurement and
quantification.

PET and brain development

Functional development of the pediatric brain has been
evaluated by FDG-PET. Chugani et al. [13] demonstrated

that the metabolic pattern of a developing brain follows the
order of anatomical, evolutional and behavioral development.
Increased glucose metabolism is shown in the visual,
sensorimotor cortex and the cerebellum, and this is correlated
with early visuo-spatial and sensorimotor function and
primitive reflexes. Hypermetabolism in the basal ganglia is
known to be associated with developing movement and
sensorimotor function.

The quantitative analysis of brain FDG-PET has demon-
strated that the degree of glucose metabolism of infants is
significantly lower than that of adults. The degree of
metabolic activity of neonates is about 30% that of adults
and it continues to increase with age. It is hypothesized that
increased metabolism is associated with increased metabolic
demands from neuronal plasticity development [14]. By a
child’s third year, the metabolic level exceeds that of adults,
and it reaches its plateau between ages 4 and 9 with a value
1.3 times higher than that of normal adults [15]. After this
period, the value decreases to adult level by the end of the
second decade [13]. Loessner et al. [16] showed significant
decline in overall degree of cortical metabolism, which was a
consistent finding related with normal aging in a study of
120 healthy volunteers between the ages of 17 and 79.

The pattern of glucose metabolism of a pediatric brain
becomes similar to that of young adults by 1 year of age.
Compared to other parts of the brain, the frontal lobe
demonstrates more significant age-related metabolic
changes. For the first 4 months of life, the glucose
metabolism in the frontal lobe remains relatively low and
gradually increases as frontal lobe-mediated cognitive
function and complicated social interaction develops.
Linear regression analysis by Chawluk et al. [17] demon-
strated 38% decrease in the whole brain metabolism with
aging and 42% decline in frontal lobe metabolism. No
significant differences were found between men and
women in regional glucose metabolism [16, 18]. Other
cortical areas such as the parietal, occipital, and temporal
lobes have significant variations within and across age
groups. It is shown that metabolic activity in the basal
ganglia, thalami, hippocampi, cerebellum, visual cortices,
and posterior cingulated gyrus remain stable throughout age
[16]. The metabolic activity in the brainstem increases with
age [16]. It is not clear whether brain atrophy contributes to
this hypometabolism with aging. Further brain FDG-PET
studies need to be done with consideration of atrophy
correction.

PET in pediatric epilepsy

A number of PET tracers make it possible to visualize
different aspects of brain function such as blood flow, glucose
metabolism, protein synthesis, and neurotransmission. F-18
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FDG is the most widely used PET tracer for evaluating brain
glucose metabolism for localizing epileptogenic focus
in clinical practice. Because of its long uptake period
(40–60 min), FDG-PET is more suitable for capturing the
interictal state of epilepsy rather than the ictal state. The
pattern of glucose metabolism in a PET scan is hypometab-
olism of the ipsilateral temporal lobe with or without less
severe hypometabolism in the extratemporal structures
such as frontal lobe, parietal lobe and contralateral
temporal lobe. If lesions are associated with epilepsy,
the extent of hypometabolism is greater than the size
of the structural lesion [19].

The pathophysiology of regional hypometabolism in
interictal FDG-PET is not clear. Several hypotheses have
been proposed, including neuronal cell loss, neuronal
inhibition, and diaschisis associated with hippocampal
neuronal loss [20]. However, conflicting evidence also
exists, such as temporal hypometabolism without neuronal
loss or gliosis [21], and the poor correlation between
metabolic change in the temporal lobe and hippocampal
cell count [22]. Additional factors that might contribute to
interictal hypometabolism include an inhibitory process
and reduction in synaptic density. It has been suggested
that this secondary inhibition or neuronal loss in the area
surrounding the epileptic zone can cause larger and more
extensive hypometabolism in FDG-PET [20, 23, 24] and
hypoperfusion in single photon emission CT (SPECT)
[25] than the area of involvement seen on electroenceph-
alography (EEG) or pathologic correlate. Further work
needs to be done to validate this pathophysiology.

It has been demonstrated that interictal FDG-PET is
more sensitive than MRI in localizing epileptogenic focus
in both temporal and extra-temporal epilepsy [26]. It was
reported that about 29% of patients with partial epilepsy
have a normal MRI [27]. Intracranial EEG is limited in
this situation by the lack of knowledge needed to target
electrode locations to the areas of suspected seizure onset.
The potential diagnostic role of FDG-PET and SPECT in
the absence of anatomical findings has been described by
Lee et al. [28], and they showed more than 70% of
positive predictive value of FDG-PET and ictal SPECT in
MRI-negative cryptogenic epilepsy. Chugani et al. [29]
and Swartz et al. [30] also showed localization rates of
57% and 32%, respectively, by FDG-PET in patients with
normal MRI.

MRI and PET co-registration in pediatric epilepsy

18F-FDG-PET represents a useful tool for presurgical
evaluation of epilepsy, particularly when MRI is nonle-
sional. Previous studies have shown 18F-FDG-PET to have
63–100% sensitivity in lateralizing temporal lobe epilepsy

(TLE) and to provide complementary information to MRI
[31–33]. For extratemporal lobe epilepsy (ETLE), studies
have shown 18F-FDG-PET to have slightly lower sensitivity
at 36–83% [33, 34]. In addition to increasing detection
rates, some studies have indicated that 18F-FDG-PET can
provide postsurgical prognostic information independent
of information provided by MRI [35]. 18F-FDG-PET
might thus provide complementary as well as supplementary
functional information in regard to the etiology of seizure
activity [29, 36] (Figs. 1 and 2).

Given the parallel roles of MRI and 18F-FDG-PET in
presurgical evaluation for epilepsy patients, co-registration
of MRI and 18F-FDG-PET might enhance presurgical
management of intractable epilepsy. This has not been
unequivocally established, but it is already recommended
that 18F-FDG-PET images be interpreted in light of all
structural imaging information [37]. In the recent UCLA
cohort, 18F-FDG-PET and MRI co-registration demonstrated
favorable postsurgical outcomes (Engel class I–II) in 80% of
the patients with intractable epilepsy with the application of
co-registered imaging to maximally resect the functionally
abnormal area. This technique uses anatomic imaging to help
define the limits of resection, despite previous MRI findings
that had been considered to be nonlesional [38]. In
comparison, in studies of patients without the use of
anatomic and functional co-registration, only 69–76% of
patients were Engel class I–II at a similar follow-up period,
30–50% when preoperative MRI was nonlesional [39].
Reasons for this lower rate of favorable outcomes without
co-registered image-guided surgery include difficulty in
delineating the epileptogenic zone and correlating it with
relevant structural anatomy [39].

Application to focal cortical dysplasia (FCD)

In the most widely accepted histopathologic classification
system, FCD is divided into two subtypes: type I and type
II [40, 41]. FCD type II is associated histopathologically
with dysmorphic or dysplastic neurons, often with
balloon cells. MRI of FCD type II shows focal cortical
thickening, abnormal gyral and sulcal patterns, and
prominent blurring of the gray-white matter junction.
FCD type I is associated with architectural abnormalities,
often with giant or immature neurons. MRI of FCD type
I shows less prominent gray-white matter junction
blurring, and signal changes predominantly in white
matter and prominent lobar hypoplasia [42]. MRI of
FCD type I has been challenging, despite improvements in
recent MRI techniques, as it usually yields only normal or
subtly abnormal MRI findings. Studies have demonstrated
that only 30–70% of patients with type I FCD have
positive MRI scans, compared with 80–100% of those
with type II FCD [43, 44].
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In comparison, 18F-FDG-PET has been shown to
effectively identify FCD despite normal MRI findings
[29]. 18F-FDG-PET has been reported to be 75–100%
sensitive in localizing areas with FCD, when taken as a
group [45]. But for subtle FCD, MRI identified only 13%
as compared to 86% with 18F-FDG-PET. This study
suggests that 18F-FDG-PET is more sensitive than MRI
and that it is particularly useful in cases of type I FCD.

Application to tuberous sclerosis complex (TSC)

TSC is an autosomal-dominant neurocutaneous syndrome
with manifestations found throughout the body. In the
brain, disordered proliferation, migration, and differenti-
ation of neurons results in subependymal giant-cell

astrocytomas, subependymal nodules and tubers. Starting
at infancy, children with TSC develop increasing seiz-
ures, and 25–50% of TSC patients develop intractable
epilepsy [46]. Usually, multiple tubers are present, but
seizures often arise from a single tuber [47]. Given the
medically refractory nature of the epilepsy, surgery should
be considered for such cases. The outcome of surgery is
dependent on accurate preoperative assessment to guide
resection of the epileptogenic tuber [48].

But presurgical evaluation has been challenging.
Although CT and MRI can reveal the presence of multiple
tubers, such anatomic imaging used alone cannot select the
epileptogenic tuber. Additionally, there are cases of TSC
patients with intractable epilepsy in which MRI fails to detect
histopathologically demonstrated tubers [49]. Furthermore,

Fig. 1 In a child being evaluated for epilepsy, the coronal T2 image
(a) and coronal FLAIR (b) show mild volume loss in the right anterior
temporal lobe. c The PET-fusion MR image shows hypometabolism

with the right anterior temporal lobe. The pathology after surgical
resection of the right anterior temporal lobe was focal cortical
dysplasia type 1

Fig. 2 In a child with tuberous sclerosis, the axial T2 image (a) shows
multiple subcortical lesions that correspond to tubers. b The PET-MR
fusion image shows multiple areas of hypometabolism in the frontal

lobes bilaterally and also the left parietal lobe. c The MEG study
shows abnormal activity in the left frontal lobe tuber
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noninvasive EEG techniques might not localize epileptogenic
activity to a discrete tuber. Recently, a multimodality imaging
approach using MRI and 18F-FDG-PET co-registration as
well as DTI has been demonstrated to be useful in presurgical
evaluation to localize epileptogenic tubers [50]. Larger
volumes of 18F-FDG-PET interictal hypometabolism
relative to MRI tuber size showed promise for detecting
epileptogenic tubers as well as improving surgical outcomes
[50]. Thus a multimodality approach with MRI and
18F-FDG-PETco-registration should continue to be evaluated
as a promising technique for noninvasive presurgical
evaluation for TSC.

PET/CT in pediatric head and neck lymphoma

CT plays an important role in the initial staging and
evaluation of recurrence of various pediatric oncologic
diseases. While CT may provide excellent anatomic and
morphologic information related to the extent of metastatic
disease, it is limited in differentiating benign from malignant
lesions in lymphoma or primary organs. Whole-body PET
with 18F-FDG can provide excellent detection of malignant
lesions and has been shown to be effective in the
management of many different adult oncologic diseases.
18F-FDG can also be taken up by normal physiological
processes and inflammatory processes that are non-
neoplastic. Recently, combined PET/CT imaging has been
introduced and recent studies have proven that it may
improve the diagnostic accuracy of staging adult oncologic
diseases [51–53], particularly with respect to head and neck
cancer and lung cancer. The advantage of PET/CT imaging
in pediatric oncologic imaging has also been recently
demonstrated [54–58]. We have also found PET/CT
examinations in the head and neck region allow better
anatomic localization and differentiation of hypermetabolic
foci in the head and neck region that correlates with
normal anatomic structures demonstrating brown fat or
normal physiologic function (Figs. 3 and 4). PET/CT
imaging can also be used to stage, localize and evaluate
treatment effect in Hodgkin’s disease in the neck and spine
region (Figs. 5 and 6). Other examples of added value of
the combined PET/CT images include better anatomic
localization of hypermetabolic foci in Hodgkin’s disease
lymph nodes not considered significant due to CT size
criteria or may be difficult to see on CT (Fig. 7). We also
found that PET/CT improved the ability to detect tumor
recurrence of other tumor types besides lymphoma (for
example, parathyroid carcinoma), particularly with respect
to lymph nodes which were not considered significant by
CT size criteria. Now that combined PET/CT imaging has
become more widely available, particularly in children
hospitals, it will be the preferred imaging tool in the

staging of lymphoma and other pediatric oncologic
diseases.

PET/CT imaging of pediatric brain tumors

There has been a recent increase in the use of PET in the
evaluation of brain tumors. There has also been a recent
increase in radiopharmaceuticals for PET tumor imaging.
Currently, FDG is the only radiotracer approved by the
Food and Drug Administration (FDA). Labeled amino
acids can be complementary to PET imaging. One of the
most common labeled amino acids is 11C-methionine
(MET). Another radiotracer, thymidine, has been shown
to be useful in the evaluation of tumor proliferation [59].
FDG-PET is being used as an adjunct tool in cases
where CT and MR are unable to address a specific
clinical question. Most of the applications of PET to
brain tumor imaging have been in adults rather than
children. The most common clinical reasons for using
PET imaging include: (a) confirmation of the presence
or absence of tumor; (b) help in establishing the grade
of malignancy; (c) determination of the degree of
treatment of the tumor or tumor response; and (d)
distinguishing tumor recurrence from radiation necrosis
[60] (Figs. 8, 9, and 10).

FDG-PET is very sensitive in detecting high-grade
gliomas. PET imaging can be confounded by the high
uptake normally seen in the cortex, resulting in less
accurate detection of low-grade gliomas [61]. Of note,
MET-PET imaging has a higher accuracy rate compared
with FDG in the detection of low-grade gliomas [62–65].
MET-PET can be useful to perform serial delayed imaging
to evaluate the washout of FDG from brain tumors, because
FDG usually takes longer to wash out relative to normal
surrounding brain tissue [66]. Given that there might be
inflammation after treatment, it is useful to delay scanning
1–2 weeks after chemotherapy and 6–8 weeks after
radiation therapy [67]. MET-PET imaging might also be
useful for determining treatment response in gliomas [68,
69]. There is lower uptake in surrounding brain tissue
with MET compared with FDG, which results in more
accurate detection by MET of low-grade gliomas [70].
18F-fluoro-L-phenylalanine (18F-FDOPA) PET has been
shown to be more accurate than 18F-FDG-PET for
imaging of low-grade tumors and evaluating recurrent
tumors [71].

Of note, nearly all of these studies have been performed
in adults, with very little pediatric data available. More
recently, PET imaging has been integrated into pediatric
multi-institutional protocols of the Pediatric Brain
Tumor Consortium, which will yield useful pediatric
data [72].
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PET/MRI

With excellent soft-tissue contrast and lack of ionizing
radiation, MRI has proved to be superior to CT in many
indications [73–75]. A large variety of protocols including
dynamic contrast-enhanced imaging, diffusion imaging,
functional MRI (fMRI), MRS and the exceptionally high
sensitivity of PET in the picomolar range allows PET/MRI to
provide MRI information on both anatomy and function for
correlation with PET-derived pathology-specific quantitative
information on different aspects of tissue function [76].

However, combining two imaging modalities without
compromising the optimal performance of each modality
is difficult. The electronic signal pulses of PET and MRI
are prone to distortion with subsequent degradation of
performance.

Other challenges of integrating the two modalities are
space restrictions and the difficulty in operating conventional
photomultiplier tubes (PMTs) in PET in the presence of a
magnetic field [77]. The hardware components of the PET
detector can interfere with the performance of the MRI
subsystem by degrading the homogeneity of the MRI’s main
magnetic field and the radio frequency (RF) field, leading to
loss of image quality and causing artefacts.

At the same time, the variable MR gradients can induce
currents in conductive materials of the PET detector,
producing image artefacts caused by signal distortion and
actual destruction of sensitive PET electronics, which, in turn,
can distort the effective applied gradient field. The electronic
paths between the dynodes in the PMT are deflected from its
normal trajectories by the interaction with the strong external
magnetic field caused by the Lorentz force.

Several alternative approaches have been proposed. One
is to align PET and MRI side-by-side. This approach would
require significant modifications, such as making PET
detectors insensitive to the magnetic field so they would
not negligibly affect the performance of the MRI scanner.
Using this approach, synchronous data acquisition would
not be possible and total exam time would be significantly
prolonged given relatively long acquisition of both PET and
MRI.

To overcome mutual interference between PET and MRI,
several new approaches have been suggested:

(1) Optic fiber

To minimize electron deflection in PMT by the strong
magnetic field, light fibers are designed to be coupled to the
PET detector’s scintillation crystals. Therefore, only coin-
cident photon detectors remain in the magnetic field of the
MR scanner and the scintillations are directed out of this
high magnetic field by the light fibers. It was shown that
bismuth germanate (BGO) and lutetium ortho-oxysilicate
(LSO) crystals produce only small magnetic distortion,
whereas gadolinium orthosilicate (GSO) and lutetium
gadolinium orthosilicate cause significant distortion and
artefacts in MR images [78].

Early PET/MR images showed no significant artefacts or
image distortion either in PET or MRI by using 48 LSO
crystals PET and 0.2–4.7 T MRI [79]. However, downsides
of this method are the physical constraint of axial field-of-
view and assembly issues caused by the number of optic
fibers connected to each scintillation crystal and loss of
light signal compared with the original amount available at
the crystal’s readout surface, which cause degradation of

Fig. 3 Images of an 8-year-old boy with history of Hodgkin
lymphoma. There is normal robust PET uptake in Waldeyer’s tonsillar
ring. There is mild abnormal uptake in the posterior cervical chain

lymph nodes bilaterally (black arrow) that are not significant by CT
size criteria. a Axial PET, b axial CT, and c fused PET/CT images

Pediatr Radiol (2010) 40:82–96 87



timing, energy resolution and overall PET performance
[80].

(2) Semiconductor light detector

Avalanche photo dinodes (APD) have been introduced
as an alternative to existing PMT for PET/MRI. Although
APDs have a lower gain and are more sensitive to
temperature variations than conventional PMT, the major
advantage of APDs is that their insensitivity to magnetic
fields allows them to be directly connected to the
scintillation crystal block within the magnetic field via
short light guide [81]. Therefore, light loss can be
minimized and the conversion of light to electronic signals
occurs inside the MR subsystem, without the use of
unnecessary fragile and bulky optical fibers. In addition, a
more compact design is possible by using APDs that are
smaller than PMTs, leading to expansion of the axial and
transaxial fields-of-view of the PET subsystem.

Because of low-gain APDs, amplification of low-
amplitude analogue signal is required by using a preamplifier

that is installed proximal to the APDs. Thin copper shielding
is essential to prevent electrical interference of the PETsystem
by MR and distortion of MR images by PET electronic
signals. However, the copper shield itself is prone to the
induction of current caused by the MR gradient system. This
current can lead to MR image distortion, a reduction of the
effective gradient strength and possible heat generation inside
the shieldingmaterial. In the future, new semiconductor-based
light detectors, such as Geiger-mode APDs (also known as
silicon PMTs), will likely be developed.

(3) Split magnet

Lucas et al. [82] developed a PET system within the gap
between magnets. The multi-ring PET detectors with 120-cm
long optical fibers are assembled in an 80-mm gap between
magnets with field strength of 1 [82]. These optic fibers
connect LSO crystals of the PET detector ring inside the MR
subsystem to PMTs outside the magnet. Unlike previous
optic fiber design, the fibers in this design are led outside the
MRI sub-system in a radial pattern rather than an axial

Fig. 4 Images of a 13-year-old
girl with history of Hodgkin
lymphoma. There is abnormal
PET uptake (gray arrows) in the
posterior soft tissues of the neck
that corresponded to fat density
on the CT images. a Axial PET,
(b) axial CT, and (c) fused
PET/CT images, (d) coronal
reformatted image of the high
uptake seen at the neck base
consistent with brown fat, (e)
biopsy specimen of brown fat
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direction. It was shown that successful, simultaneous PET
and MR imaging could be performed using this system [82,
83]. However, there is light loss by 60% from transferring
through the optic fiber, resulting in degradation of energy
and time resolution. Also the limited magnetic field strength,
diminished homogeneity of the main magnetic field and
limited gradient performance are the shortcomings of a split
magnet design.

(4) Field cycling

Gilbert et al. [84] proposed a combination of PET and
field-cycled MR where the PET subsystem can be installed
in the gap of the polarizing magnet and the PET data are
only acquired when both magnetic fields (polarizing field
and readout fields) are off (sequential PET and MR data
acquisition). One of the advantages of this method is that

Fig. 6 Lymphoma involving
the thoracic spine in a child.
a Pre-therapy sagittal T1 image
shows abnormal low T1 signal
within a lower thoracic vertebra
consistent with lymphomatous
involvement. After multiple
rounds of chemotherapy, the
follow-up PET/CT imaging
shows hypometabolism with the
same vertebra. b Axial PET,
(c) axial CT, and (d) fused PET/
CT images

Fig. 5 Images of a 10-year-old boy with history of Hodgkin
lymphoma with abnormal left jugulo-digastric and posterior cervical
lymphadenopathy. The contrast-enhanced CT images do not preclude

visualization of the abnormal PET uptake within the lymphadenopathy.
a Axial PET, (b) axial CT, and (c) fused PET/CT images
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no optical fibers are needed and that PMTs can be installed
in the vicinity of the scintillation crystals, avoiding
excessive light loss [85].

However, it is difficult to monitor temporal biological
processes with non-simultaneous data acquisition. Also, it
remains unclear whether the PMT performance would be
compromised over time because of the relatively high
magnetic fields switching at a high frequency.

Application of PET/MRI

With excellent soft-tissue differentiation, lack of ionizing
radiation from the MRI component and potential simulta-
neous anatomical and functional data acquisition, combined
PET/MRI seems promising and can offer potential application
for novel molecular imaging.

Currently, most of the initial PET/MRI imaging has been
based on small animal studies. The first PET/MRI studies
in humans demonstrated an excellent simultaneous non-
degraded performance of both PET and MRI imaging [86,
87].

A recent study showed the diagnostic advantages of
fused PET and MR images over PET/CT [88]. The impact
and application of PET/MRI would be greater in the
neurologic and psychiatric area than any other, given
various applications of MRI in these fields. With the ability
of PET/MRI to obtain multiparameter functional data,
kinetic studies in neurology and psychiatry can offer a
variety of information on the dynamic tracer, drug,
neurotransmitter and receptor distribution in various brain
structures from PET with flow-dependent kinetics measured
by MRI, with further extension to MRS and fMRI. Combined
PET/MRI imaging might also lower the radiation exposure to
children compared to PET/CT imaging.

Neuroreceptor imaging

Receptors in the brain have multiple distinct functions, such
as (1) being effector sites of neurotransmission at the
postsynaptic membrane, (2) having a regulatory role on
presynaptic sites for transmitter uptake, and (3) providing
both feedback and modulation of various functions on cell

Fig. 7 Recurrent cervical lymphoma in a child. a CT shows no
obvious lymphadenopathy. b The PET image shows a large focus of
hypermetabolic uptake in the right posterior cervical chain region. The
fused PET/CT image shows the areas of hypermetabolism co-localized

with a posterior cervical chain lymph node posterior to the
sternocleidomastoid muscles. c, d SUV values measured within the
lymph node are suggestive of recurrent disease

90 Pediatr Radiol (2010) 40:82–96



membrane. Imaging of the distribution of receptors provides
insight into the neurobiological aspects of the brain that
cannot be visualized by anatomical imaging or functional
imaging of blood flow and metabolism [89]. In the past,
visualization of this network of various receptor systems had
been limited with lack of proper radioligand and had been
only demonstrated by postmortem autoradiography. However,
the recent development of new radioligands makes it possible
to visualize and quantify the distribution, density and activity
of receptors using in vivo imaging. Up to date, PET is found
to be the most selective and sensitive method (pico- to
nanomolar range) for measuring receptor density and
interaction in vivo.

Neuroreceptor imaging in epilepsy

Neurochemical characterization of the cortical zones in the
epileptic brain with specific receptor ligands is gaining
more recent attention. Currently, no studies demonstrate the
clinical usefulness and superiority of receptor imaging over
ictal perfusion SPECT and brain FDG-PET imaging in
epilepsy. In addition, imaging of these receptors is more

limited to the research domain because of less availability
compared to FDG-PET and SPECT perfusion tracers.

γ-Aminobutyric acid (GABA)

GABA is an inhibitory neurotransmitter in the brain that
counterbalances neuronal excitation. The γ-aminobutyric
acid (GABAA) receptor has gained clinical significance as a
marker of neuronal integrity in neurodegenerative disorder,
epilepsy and stroke. It has been recently demonstrated that
GABA plays an important role in the mechanism and
treatment of epilepsy [90]. Among two types of GABA
receptors (GABAA and GABAB), GABAA receptor has
been imaged using 11C- or 18F-labeled flumazenil (FMZ).

More recently, 11C -labeled FMZ binding has been found
to be abnormal in both gray and white matter structures in the
brain of patients with different types of refractory neocortical
focal epilepsy and normal MRI. Increased FMZ binding was
also noted in the periventricular region, a common location
for nodular heterotopia, which is associated with a poor
surgical outcome in patients with unilateral hippocampal
sclerosis [91]. Increases in FMZ binding in the frontal and

Fig. 8 Images of a child with a history of anaplastic astrocytoma
involving the midbrain and thalamus. a Axial post-contrast T1 image
shows heterogeneously enhancing mass in the region of the midbrain
and thalamus. b Corresponding axial T2 image shows intermediate T2
heterogeneous signal within the mass. c After multiple rounds of
chemotherapy, a smaller residual mass is seen in the same region,
which had been stable over multiple scans. d Single-voxel MR
spectroscopy of the residual tumor shows elevated myo-inositol and

choline with residual NAA. e Dynamic contrast perfusion MR image
shows relatively low cerebral blood volume within the lesion. f Mean
diffusivity map (ADC) from diffusion tensor acquisition shows
relatively higher ADC signal within the lesion compared to surrounding
normal tissue, suggesting a lack of very hypercellular tumor. g CT from
PET/CT study shows calcification within the residual tumor; h the
corresponding PET from the PET/CT study shows relative hypometab-
olism within the lesion
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parietal lobes were also demonstrated in patients with parietal
epilepsy [92].

Opioid receptor

There is growing evidence on the potential role of opioid in
the defense mechanism as an endogenous anticonvulsant
substance [93].

Frost and Mayberg et al. [94, 95] demonstrated increased
binding of selective µ-opioid receptor ligand, 11C-carfentanil,
in the lateral temporal neocortex ipsilateral to the
epileptogenic focus in patients with TLE. This is
considered to be a result of an increase in affinity or
the number of unoccupied receptors. A similar result was
reported using δ-opioid peptide receptor ligand, 11C-
methylnaltrindole [96].

Increased opiate receptors in the temporal neocortex might
represent a defense mechanism, a tonic anticonvulsant system
that limits the spread of electrical activity from other temporal
lobe structures. Also, Hammers et al. [97] reported that the
increase opioid binding diminished over time after the
seizure onset.

5-Hydroxtryptamine (5-HT1A ) serotonin receptor

Serotonin receptors and transporters have been studied
mainly in affective disorders, Alzheimer and Parkinson
diseases, autism and schizophrenia.

Converging lines of evidence implicate a potential role
and association of serotonin with epilepsy in both humans
and animals [98, 99]. Surgically removed human brain
tissue for epilepsy showed a higher level of 5-HIAA

Fig. 9 Images of a child with history of anaplastic astrocytoma
involving the left frontal parietal region. a Axial T1 image after
surgical resection and multiple rounds of chemotherapy and radiation
shows nonspecific edema along the margin of the resection cavity. b
Axial mean diffusivity (ADC) image from diffusion tensor acquisition
at the same time shows low ADC signal around the margin of the
resection cavity, suggestive of hypercellular tumor. c Dynamic
contrast perfusion cerebral blood volume map done at the same time

shows high relative cerebral blood volume along the posterior margin
of the resection cavity. d Corresponding PET image shows focus of
hypermetabolism along the margin of the resection cavity. e MR
spectroscopy performed at the same time along the posterior margin of
the resection cavity shows elevated choline, reduced NAA and marked
elevation of lipids, suggestive of transformation to glioblastoma
multiforme. f Follow-up MR a few months later shows severe
recurrence of the lesion
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(5-hydroxyindole acetic acid, the breakdown product of
serotonin) [100, 101], and increased serotonin immunore-
activity was reported in the temporal lobe, with active
spikes compared to normal control [102].

Theodore et al. [103] demonstrated reduced serotonin
receptor binding in ipsilateral temporal epileptogenic
foci using 18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl)
piperazin-1-yl]ethyl-N-(2-pyridyl)cyclohexanecarboxa-
mide (18F-FCWAY), a selective 5-HT1A receptor antago-
nist in patients with TLE, implicating decreased antagonist
binding to serotonin receptor by competition of endogenous
serotonin [103].

α-[11C]Methyl-L-tryptophan (AMT)

α-[11C]Methyl-L-tryptophan (AMT) is an analogue of
tryptophan, a precursor for serotonin synthesis developed
as a PET tracer for serotonin synthesis [104–106]. Studies
have shown the increased AMT uptake of epileptogenic
tubers in patients with tuberous sclerosis [107, 108].

Increased AMT uptake was more frequent in patients
with cortical dysplasia (60%) than in patients with normal
MRI (30%) [109]. On the other hand, Juhasz et al. [110]
reported high specificity of increased AMT uptake for
localizing epileptogenic lobe both in patients with normal
MRI and those with cortical malformation.

It was found that the area with increased AMT uptake is
adjacent to the epileptogenic focus based on spatial
comparison of AMT-PET and EEG. Rosen et al. [111]
demonstrated increased thalamic innervations of cortex
adjacent to epileptic focus. Increased serotonin synthesis
based on increased AMT uptake adjacent to epileptogenic

focus could be associated with proliferation of raphe-cortical
serotonergic fiber caused by release of brain-derived neuro-
trophic factor from epileptogenic focus [112]. This finding
led to a hypothesis of reorganization of thalamocortical
afferent input where adjacent normal cortex receives
relatively more innervations because of lack of target within
the dysplastic epileptogenic focus.

Nicotinic acetylcholine receptor (nAChR)

Nicotinic receptor has been targeted as a marker of
cognitive and membrane impairment and has been studied
in depression, cognitive and memory disorders, Alzheimer
and Parkinson diseases. It was found that mutation was
found in a subset of genes coding for subunits of the
nAChR in autosomal-dominant nocturnal frontal lobe
epilepsy (ADNFLE). About 10% of ADNFLE families
demonstrate mutations in the nAChR α4 or β2 subunit,
which together compose the main cerebral nAChR. Picard
et al. [113] found a significant increase in nAChR density
in the epithalamus, ventral mesencephalon and cerebellum,
suggesting these structures mediate the pathophysiology of
ADNFLE and decreased nAChR density in the right
dorsolateral prefrontal region, consistent with focal epilepsy
involving the frontal lobe.

Conclusion

PET has become an important tool in the evaluation of
pediatric neurological disease. Both PET and PET/CT can
provide useful diagnostic information in the evaluation of

Fig. 10 A child with a posterior fossa ependymoma. a Axial T2
images show a posterior fossa mass centered within the fourth
ventricle extending into the left foramen of Lushka, which was
resected. b After multiple rounds of chemotherapy and radiation, a

small residual focus of tissue can be seen within the left foramen of
Lushka on axial T2 imaging. c The PET/CT image shows hypome-
tabolism in the residual tissue, which could be metabolic inactive
residual tumor or possibly scar tissue
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pediatric epilepsy, pediatric head and neck lymphoma and
pediatric brain tumors. Multi-institutional trials that incor-
porate PET/CT protocols will likely yield more useful
information that can be applied to different pediatric
neurological disease processes. Future applications include
combined PET-MRI imaging and neuroreceptor imaging.
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