Evaluation of Bone Mineral Density in Children

Jeannette M. Pérez-Rosselló, MD

Radiology Department Boston Children' s Hospital Harvard Medical School

Disclosure: None

- I have no relevant financial relationship with manufactures of any commercial products and/or providers of commercial services discussed in this CME activity
- I do not intend to discuss an unapproved/ investigative use of a commercial product/device in my presentation

Background

95% bone mass accrued by end of adolescence

Structure and composition change

- Chronic childhood diseases result in poor bone accrual or bone loss
- Identify children at risk of fractures
- Treatment and monitoring

Weaver et al (2016) Osteoporos Int 27:1281 Baxter-Jones et al (2011) J Bone Miner Res 26:1729

Demineralization Radiography

- Qualitative: Visual and Morphology
 - Cortical thinning
 - Altered trabecular pattern and geometry
 - Radiolucency of the bone
- Genant's Semi-quantitative
 Assessment
 - Decrease height of vertebral bodies
 - Vertebral endplate changes
- Digital X-Ray Radiogrammetry (DXR)

 Metacarpal cortical thickness
- Vertebral fracture assessment (VFA) – Lateral spine image obtain during DXA

Neelis (2017) Clin Nutr. In press Renz (2014.) J Bone Miner Metab 34:55 Nusman (2015) Eur J Radiol 84:1999 Adiotomre (2017) Eur Radiol 27:2188

Demineralization Intra-and Inter-Observer Agreement

25 OHD = 7 ng/mL Thacher Score = 0 Demineralization = ?

10 mo

Variability	% Agreement	Карра	Interpretation
Inter-observer	12	0.25 (95% CI: 0.13-0.38)	Fair
Intra-observer (Pooled 3 readers)	66	0.29 (95% CI: 0.11-0.47)	Fair

- 360 healthy infants and toddlers (8-24 mo)
- 44 (12%) had Vit D deficiency (25 OHD<20 ng/mL)
- Demineralization reported frequently: 'questionable' or mild
- Considerable inter- and intra-observer variability
- When demineralization present, Vit D levels lower (p=.02)

ACR Appropriateness Criteria Osteoporosis and Bone Mineral Density

Variant 1. Asymptomatic BMD screening or individuals with established or clinically suspected low BMD.

Radiologic Procedure	Rating	Comments	RRL
DXA lumbar spine and hip(s)	Total Body Less Head 9		•
QCT lumbar spine and hip	Forearm, Femur, Tibia 6		♦♥♥
DXA distal forearm	5		•
TBS lumbar spine	4		•
QUS calcaneus	2		0
SXA distal forearm	2		•
pQCT distal forearm	2		•
X-ray axial skeleton	1		Varies
X-ray appendicular skeleton	1		\$

Note: Rating Scale 1,2,3 = usually not appropriate; 4,5,6 = may be appropriate; 7,8,9 = usually appropriate. DXA = dual-energy x-ray absorptiometry; pQCT = peripheral QCT; QCT = quantitative CT; QUS = peripheral ultrasound; RRL = relative radiation level; SXA = single x-ray absorptiometry; TBS = trabecular bone score.

Difference between DXA and QCT

DXA: 2-Dimentional areal BMD = g/cm²

and a state of the			
Region	Area (cm ²)	BMC (g)	BMD (g/cm ²)
L Arm	110.53	45.84	0.415

		NB/		
Arm	110.53	45.84	0.415	
R Arm	116.00	48.11	0.415	
Ribs	56.24	27.28	0.485	
R Ribs	53.51	25.54	0.477	
Spine	65.61	51.73	0.788	
, Spine	31.25	27.72	0.887	
Pelvis	123.42	112.74	0.914	
Leg	209.34	120.03	0.573	
R Leg	212.47	125.19	0.589	
Subtotal	978.36	584.18	0.597	
lead	180.83	219.49	1.214	
Total	1159.19	803.67	0.693	

QCT: 3-Dimentional $Volumetric BMD = g/cm^3$

Vertebra Analyzed:	L1	
Volume (cm ³):	1.65	
area (cm ²):	1.84	
width (cm):	1.96	
height (cm):	1.20	
depth (cm):	0.90	
kVp:	120	Survey and States
SFOV:	500 mm	
FUC:	1.055	
Table Height:	180.00	
	27	A REAL PROPERTY AND A REAL

16 <mark>QCT</mark>	Mineral weight (g)	54	
8	Volume (cm3)	27	
2	vBMD (g/cm3)	2	
DXA			L
4	Projected Area (cm2)	9	
4	aBMD (g/cm2)	6	

Bone density measurement affected by...

Gender, ethnicity, body composition, pubertal status, skeletal maturity, disease

Pediatric Guidelines

2013 Pediatric Position Development Conference

J Clin Densitom 2014;17:225

Dual-Energy X-Ray Absorptiometry Interpretation and Reporting in Children and Adolescents: The Revised 2013 ISCD Pediatric Official Positions

Nicola J. Crabtree,^{*,1,a} Asma Arabi,^{2,b} Laura K. Bachrach,^{3,b} Mary Fewtrell,^{4,b} Ghada El-Hajj Fuleihan,^{2,b} Heidi H. Kecskemethy,^{5,b} Maciej Jaworski,^{6,b} and Catherine M. Gordon^{7,c}

2013 Pediatric Position Development Conference

J Clin Densitom 2014;17:258

Quantitative Computer Tomography in Children and Adolescents: The 2013 ISCD Pediatric Official Positions

Judith E. Adams,^{*,1,a} Klaus Engelke,^{2,b} Babette S. Zemel,^{3,b} and Kate A. Ward^{4,b}

Pediatrics 2016;138(4):e20

American Academy of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN"

Bone Densitometry in Children and Adolescents

Laura K. Bachrach, MD, Catherine M. Gordon, MD, MS, SECTION ON ENDOCRINOLOGY

ACR-SPR-SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF DUAL-ENERGY X-RAY ABSORPTIOMETRY (DXA)

https://www.acr.org/-/media/ACR/Files/Practice-Parameters/dxa.pdf?la=en

- Lumbar spine and total body less head (TBLH); lateral distal femur in selected cases
- Z-score BMD: compare to normal pediatric database age, sex and race. (Never use T-scores!)
- Z-scores < 2.0 : "low bone mineral density for age"
- Bone mineral content (BMC)
- Adjustment for body size, height, pubertal status

Zemel, Kalkwarf, Gilsanz. J Clin Endocrinol Metab 2011;96:3160 Binkovitz & Henwood. Pediatr Radiol 2007;37:21 Wildman & Henwood. J Am Osteopath Coll Radiol 2012;1:17

<u>SPR</u> S. Kaste, MD, MS M. Parisi, MD J. Perez-Rossello, MD

NHANES III

Total Body Bone Area, Bone Mineral Content, and Bone Mineral Density for Individuals Aged 8 Years and Over: United States, 1999-2006

Region	Area [cm ²]	BMC [(g)]	BMD [g/cm ²]	Fat[(g)]	Lean [(g)]	Lean + BMC[(g)]	Total [(g)]	% Fat [(%)]	T- score	PR (Peak Reference)	Z- score	AM (Age ched)
L Arm	104.66	51.36	0.491	599.3	976.9	1028.2	1627.5	36.8				
R Arm	118.67	59.60	0.502	627.0	1143.5	1203.1	1830.1	34.3				
L Ribs	93.38	44.23	0.474									
R Ribs	82.48	39.66	0.481									
T Spine	68.48	37.32	0.545									
L Spine	30.74	18.77	0.611									
Pelvis	131.89	90.24	0.684									
Trunk		230		4343.4	9816.4	10046.6	14390.0	30.2				
L Leg	233.05	152.65	0.655	2744.7	2957.6	3110.3	5855.0	46.9				
R Leg	244.72	165.51	0.676	2816.5	3098.6	3264.1	6080.7	46.3				
Subtotal	1108.06	659.33	0.595	11130.9	17993.0	18652.3	29783.2	37.4			-2.6	78
Head	228.77	330.09	1.443	902.0	2734.7	3064.8	3966.8	22.7				
Total	1336.83	989.41	0.740	12032.9	20727.7	21717.2	33750.1	35.7			-2.1	85

Total Body Less Head (TBLH)

k = 1.188, d0 = 48.8 DAP: 17.7 cGy*cm2

Total BMD CV 1.0%, ACF = 1.026, BCF = 1.004

TBAR1904 - NHANES BCA calibration

https://www.cdc.gov/nchs/data/series/sr 11/sr11 253.pdf

Results Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	(Age Match	hed)
L1	8.64	3.80	0.440					
L2	8.25	4.34	0.526					Ĩ
L3	9.00	5.19	0.577					
L4	11.48	6.19	0.539					
Total	37.37	19.52	0.522			-1.6	4	82

Total BMD CV 1.0%, ACF = 1.026, BCF = 1.004, TH = 5.382

Neck	4.41	2.34	0.531		-2.8	73
Total	24.27	15.40	0.634		-1.9	82
Total BMD	CV 1.0% AC	E = 1.026 R(F - 1 004 TH -	1 305		

Total BMD CV 1.0%, ACF = 1.026, BCF = 1.004, TH = 4.305

ACR-SPR-SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF MUSCULOSKELETAL QUANTITATIVE COMPUTED TOMOGRAPHY (QCT) https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf

- Z-scores < 2.0 = "low bone mineral density"
- "Because QCT can assess both volume and density of bone in the axial and appendicular skeleton, it may be more useful than DXA in children"

<u>SPR</u> S. Kaste, MD, MS J. Perez-Rossello, MD

Gilsanz et al. Radiology 2009;250:222 Engelke. J Clin Densit 2017;20:309

QCT – Vertebral Trabecular Compartment

8 yo M slipped in ice multiple compression fractures "subjectively osteopenic"

QCT at L1 an L2 Average Trabecular BMD: 81.2 mg/cm3 Age/sex matched normal UCSF: 166.7+/-28

QCT - Trabecular and Cortical Compartments

- Relative lack of normative data for appendicular sites
 - Gilsanz: Femur cortical bone density
 - Leonard: Tibia cortical and trabecular bone density
- Measurements as baseline for longitudinal evaluation
- Mid and distal femur to identify early density changes

Distal Femur Metaphysis Trabecular BMD 120 mg/cm3

Mid Femur Cortical BMD 978 mg/cm3

Gilsanz (2009) Radiology 250:222 Gilsanz (1998) J Clin Endocrinol Metab 83:1420

Children that would benefit from QCT

- Complex chronic diseases
- Disability and/or deformity
- Patients that may move
- Patients with hardware/tubes

Patient BMD Value Compared to Age and Sex Matched Control Data (UCSF)

QCT at L1 an L2 Average Trabecular BMD: 96.5 mg/cm3 Age/sex matched UCSF: 172.3; z-score -2.91

Vertebral Bone Density

QCT dose higher than DXA but in diseased children dose is acceptable

Burrows (2010) Osteoporos Int 21:515 Engelke (2008) J Clin Densit 11:123 Adiotomre (2017) Eur Radiol 27:2188 Adams (2014) J Clin Densit 17:258 Huda (2007) AJR 188:540

Extremity Bone Density

pQCT dose acceptable for obtaining normative data in the extremities of healthy subjects

Dose (mSv) Dual-Energy QCT

Central QCT; Effective Dose Values (Calculated for a Helical 64-Detector Row Siemens Definition Flash Scanner Using the Pediatric Body Scan Mode Using 80 kV X-ray Tube Voltage and 100 mAs With a Slice Thickness of 0.6 mm and a Pitch of 1)

Age (yr)	Scan length (cm)	Sex	Effective dose (mSv)
15	10	Μ	0.59
		F	0.61
10	8	Μ	0.80
		F	0.84
5	6	Μ	1.02
		F	1.09

Dual energy scanning may account for changes in fat composition of the trabecular compartment and give more accurate measurements

Pediatric Challenges

- Limitations of normative databases

 Model specific, software analysis variability
 Ethnic normative data
- Validation of 'correction' methods
 - Height, bone age, Tanner stage
 - Body composition
- Optimize protocols
 - Identify measurement sites
 - Phantom vs asynchronous techniques

Future Research – Fracture Risk

- Microarchitecture
- Marrow and body composition
- Biomechanical properties of bone (FEA)

Micro-architecture

Marrow composition

Vajapeyam, Ecklund et al (2018) Bone 110:335

Take Home Points

- Wide variability in the assessment of demineralization with digital radiography
 - The radiologist may be the first to identify "decrease bone density" or asymptomatic fractures
- Optimal evaluation with quantitative techniques
 - DXA
 - QCT (high resolution, dual energy techniques)

KEEP YOUR GOOD EYE OPEN.

