

SPR 2017 Annual Meeting & Categorical Course May 16-20, 2017

The Westin Bayshore, Vancouver Vancouver, British Columbia, Canada "Children's imaging: Creating change, celebrating success"

General Pediatric Radiology: Abdomen Pediatric Fluoroscopy: Tips & Tricks

@CincyKidsRad

facebook.com/CincyKidsRad

Steve Kraus MD MS FAAP

Division Chief Fluoroscopy Cincinnati Children's Hospital Associate Professor Radiology & Pediatrics University of Cincinnati College of Medicine Cincinnati, Ohio, USA

Tips and Tricks Topics

- Child Life
- Contrast Agents
- Radiation Safety (Low Dose Fluoroscopy)
- Procedural tips & tricks
 - Videofluoroscopic Swallow Studies (VFSS or VSS)
 - Upper GI (UGI)
 - Small Bowel Follow Through (SBFT)
 - Contrast Enema
 - High Pressure Distal Colostogram (for preop Imperforate Anus)
 - Voiding Cystourethrogram (VCUG)
 - Check G-tube or GJ-tube

Child Life Specialists

- Experts
 - growth and development
- Bridge hospital/home gap
- age matched education
- Help cope

Contrast Selection

- Know clinical question If you don't know, find out!
- Barium vs water soluble
- Water Soluble
 - Osmolality vs opacity
 - Body serum = 275 to 295 mosm/kg

Tips on Contrast Agents

- Oral Contrasts
 - Barium
 - Most contrast UGIs and SBFTs except to rule out leak
 - If patient is eating by mouth or fed by GT/GJT usually safe
 - Water Soluble (OFF LABEL)
 - Iodixanol (Visipaque) Nonionic, Isosmotic 320 mg I/mL
 - -Rule out bowel leak
 - -UGI SBFT in premature infants to evaluate for NEC stricture
 - -NO FLUID SHIFTS
 - Ioversol (Optiray) Nonionic, slightly hypertonic 160 mg I/mL
 - -Tube checks
 - » Malfunction
 - » Replaced

Tips on **Contrast Agents**

Rectal Contrasts

- Water Soluble (OFF LABEL)
 - Ionic (Iothalamate Meglumine) Cysto-Conray II
 - -Constipation
 - Evaluate for Hirschsprung
 - Ionic (Diatrizoate Meglumine) Gastrografin
 - -Treatment for Meconium Ileus
 - -Constipation Bowel Mgt pts (potty trained)
 - Nonionic, Isosmotic (Iodixanol) Visipaque
 - -Premature Infants
 - » Evaluate for post-NEC stricture
 - » Postop-evaluate for leak

Contrast Selection

Contrast Agent	Osmolality (mosm/kg water)	lodine (mg/ml)	Cost per 10 mL
E-Z-Paque Barium	0	0	\$0.25
Visipaque 320	290	320	\$13.76
Cysto-Conray 2	400	81	\$1.10
Optiray 320	702	320	\$15.75
Gastrografin	1940	367	\$6.34
Gastroview	2000	367	Not used at CCHMC

Can dilute contrast as needed

Example Contrast Densities

- Cysto-Conray 2
- Optiray 160
- Optiray 320
- Visipaque 320
- Thin barium

81 ml/mg 160 ml/mg320 ml/mg 320 ml/mg No iodine

Radiation Safety (Low Dose Fluoroscopy)

Tips on Keeping Radiation Dose ALARA

- Know indications
- Calibrate Fluoroscope
 - Medical Physicist
- Patient size the dose
 - Measure patient
- Pulsed Fluoroscopy
 - Exam dependent

- Remove grid
- Tube lift lowest setting
- Image acquisition
- Magnification setting
- Collimation
- Gel pad management

Known Indications

- ACR appropriateness Criteria
- Know the history
 - Call if you don't know
- If alternative non-rad test better, call clinician
- Lower dose not performing rad exposing exam

Calibrate Fluoroscope

- Medical Physicist
- Lowest doses that maintain diagnostic image quality
- Patient-size the technique

Patient-Sized Technique

- Measure thickness
 AP vs Lateral (VSS)
 Medical Physicist
 - Sets dose range for patient thickness

Patient-sized Technique

- 24 30 cm
- 20 24 cm
- 17 20 cm
- 14 17 cm
- 11 14 cm
- 8 11 cm
- 5 8 cm

Courtesy of Keith Strauss

Pulsed Fluoroscopy - Pulse Rate

Total Dosage

Fluoroscopy Pulse Rate by Exam

DEFAULT FLUORO PULSE RATES/PER EXAM- PPS (PULSE PER SECOND) 3 SETTINGS PER EXAM				
20 / 15 / 10	15/4/2	4 / 2 / 1'	8 / 4 / 1'	
VSS	ESOPHAGRAM	UĠI / SBFT	CHEST/ DIAPHRAGM	
	UGI	SMALL BOWEL		
		CONTRAST ENEMA		
		COLOSTOGRAM		
		FISTULAGRAM		
		VCUG		
		NEPHROSTOGRAM		
		CLOACAGRAM		
		CYSTOGRAM		
		GENERAL FLUORO		

Remove the Grid

- In vs out of beam
- Out if pt < 12 cm
 - ↓ exposure 30%
 - Loss of contrast

Courtesy of Keith Strauss

Tube Lift

Off: SSD* 51 cm
On: SSD* 65 cm
Less magnification
Increased sharpness
Dose reduction of 20%

*SSD = Source Subject Distance SSD aka SOD (Source Object Distance)

http://xrayphysics.com/radio.html

Image Acquisition

Image Capture

Fluorograph

Radiograph

Image Acquisition

- 10 image captures (hold) ~ 1 fluorograph
- 4 fluorographs ~ 1 radiograph
- 1 radiograph ~ 40 image captures (hold)
- Average procedure ~ 6-8 fluorographs
- Radiographs could be $\geq \frac{1}{2}$ the procedure dose!

Image Acquisition

So, If Taking Scout or Delayed Images.....

- If chest or abdomen fits in field of II
 - Take Fluorographic scout image
- If patient too big too fit in field of II
 - Take Radiographic scout image

Magnification Mode

- Dose α 1/FoV
- Use sparingly
- Magnify on PACS

Magnification Mode

FoV Size	Dose Increase
31 cm	0%
25 cm	24%
20 cm	55%
17 cm	81%

Percentage of Doseage Increase

Be Aware of Image Intensifier Position

• Lower position II α Low Magnification α Low Dose

Collimation

Gel Pad

- Increases patient comfort
- ~30 ↑ in dose for overhead radiographs
 Remove for radiographs

Tips and Tricks: VFSS

- Collimate mouth-pharynx-upper airway
- Pulse rate 30 vs 15 PPS
- Include multiple swallows for each food/liq
- Follow to GEJ at least once
- Incidental esophageal findings
- Rare cricopharyngeal achalasia

Collimate mouth-pharynx-upper airway

Videofluoroscopic Swallowing Study (VSS)

Controversy: continuous fluoro vs pulsed fluoro for VSS

Can we use pulsed fluoroscopy to decrease the radiation dose during video fluoroscopic feeding studies in children?

M.D. Cohen*

CONCLUSION: Decreasing the fluoroscopic pulse rate cannot be used as a method of decreasing radiation dose during performance of video fluoroscopic studies because it will potentially result in non-detection of episodes of supraglottic penetration of liquid barium.

Theoretical, No supporting clinical evidence

Videofluoroscopic Swallowing Study (VSS)

- Pharyngeal phase duration 500 msec
- At 30 pps 33 msec between frames
- At 15 pps 66 msec between frames

Clinical Radiology (2009) 64, 70-73

- Therefore theoretically there are multiple frames
 during which aspiration could be seen
 - -The aspiration itself
 - -Contrast in the trachea
- 30 vs 15 cannot be distinguished by human eye

Follow to GEJ at least once

Incidental esophageal findings

Tips on **Performing Diagnostic UGI**

Tips and Tricks: Esophagram/UGI

- NPO times:
 - Neonates/young infants = 2-3 hours
 - Older infants/children = 4 hours
 - Adolescents = 6-8 hours
- Exceptions for emergent studies

Positioning Controls Bolus

- Left hand tower, right hand patient
- Hold patient at thigh
- Positioning emphasizes control of contrast bolus
- Start Left Lateral and then AP esophagus, mouth to GEJ
- RAO positioning to open up antrum-pylorus-bulb
- FIRST lateral passage thru duodenum
- Straight AP DJJ
- LPO DJJ over bulb
- Intermittent pulsed fluoroscopy

Left Lateral and AP esophagus to GEJ

RAO Open Up Antrum-Pylorus-Bulb

Lateral vs RAO

Rare Antral Abnormality - Web

FIRST Lateral Pass Thru Duodenum

LPO DJJ Over Bulb

Clips of Esophagus and Duodenum

More Tips and Tricks: D_x UGI

- Knowing you're truly lateral
- Knowing you're truly AP
- Knowing you are RAO

Knowing You're Truly Lateral - Esophagus

Knowing You're Truly Lateral - Duodenum

Knowing You're Truly AP - DJJ

Base of the Heart

Vertebral Pedicles and Ribs

- Ribs not symmetric
- Pedicles not symmetric
- DJJ appears abnormal

Why Positioning So Important

- Biggest pitfalls:
 - -Rotation on frontal Call malrotated
 - Published articles succumb
 - -No Lateral entire duodenum
 - Is duodenum retroperitoneal?
 - -No RAO miss antral web due to overlap

Small Bowel Follow-Through

- Equivocal Malrotation on UGI
 - Evaluate cecal position follow through
- Inflammatory bowel disease
 - Alternate supine and prone overheads
- Small bowel obstruction post NEC ? Stricture
 - Follow till small bowel evacuated

Cecal Position

- Get delayed images
- More delayed the better
- Shouldn't equivocate
- Spot views can help
- Rotate sl left of AP

Small Bowel Follow-Through

- Keep stomach filled
 SB completely filled
 Compare regions of SB
 Abnormal areas stick out
- Alternate supine & prone KUB
 - Self compression on prone

Spot Images TI and Cecum

- Spot images
 - Abnormal areas on overhead KUBs
 - Terminal Ileum
 - Location cecum in equivocal DJJ
 - LPO, prone& lay on balloon

Small Bowel Follow-Through

Obstruction

- Fill till obstruction or TI
- Follow till contrast evacuated from SB
- Partially obstructedDilated loops with residual contrast

Tips and Tricks: Contrast Enema

- Contrast selection
- Enema tip selection
- Positioning
- Control the flow
- Foley balloon positioning
- When to reflux into TI

Tips on **Contrast Agents**

Rectal Contrasts

- Water Soluble (OFF LABEL)
 - Ionic (Iothalamate Meglumine) Cysto-Conray II
 - -Constipation
 - -Evaluate for Hirschsprung
 - Ionic (Diatrizoate Meglumine) Gastrografin
 - -Treatment for Meconium Ileus
 - -Constipation Bowel Mgt pts (potty trained)
 - Nonionic, Isosmotic (Iodixanol) Visipaque
 - -Premature Infants
 - » Evaluate for post-NEC stricture
 - » Postop-evaluate for leak

Enema Tip Selection

Green	Blue	Pink	Foley
Preemie	5 months – 2 years	3+ years	0-5 months (balloon out/in)
	Eval for Hirschsprung's Disease	Eval for Hirschsprung's Disease Bowel Mgt Eval	Neurogenic bowel Bowel Mgt
			Anorectal malformation

Positioning

- Important images:
 - Lateral/AP recto-sigmoid as far to splenic flexure
 - Contrast flowing when taking images!
 - Turn off when turning patient
 - AP Full colon in constipation/BM cases
 - Post-evac diaper or bathroom (not routine drain)
 - Drain if small pt and no spont evac
 - To avoid fluid shift induced dehydration/vomiting

Contrast Enema - Positioning

- Premature
- Post-NEC
- ? Stricture
- Balloon inflate w fluoro
- 50 mL syringe
- Iodixanol

Control flow

- Flowing when taking Images
- Turn off when repositioning patient
- In neonates for bowel obstruction
 - If make Dx Hirschsprung's, STOP
 - If microcolon, Reflux TI to further eval
- Constipation w/u Fill colon, no TI reflux

Foley Balloon Positioning

When to Reflux into TI

- Entire colon small in NB
 MI vs atresia vs Total colonic HD
- NL CE in W/U for SBO
 - Premie with h/o NEC
 - Post-op SBO

High Pressure Distal Colostograms

- Foley catheter inside MF
- Balloon \leq size of bowel
- Pressure to distend rectum
 - Flat rectum not enough
 - Round rectum adequate

Tips and Tricks: VCUG

- Review R & B US
- Catheter insertion
- Cyclic studies
- Estimating bladder volume

- Oblique images
- Grading VUR
- Thick bladder wall

Review Renal & Bladder US

- Bladder
 - Ureterocele, stone, thick?
- Kidney
 - Pelvocaliectasis, hydroureter, stone, urothelial thickening, duplication suggested?

Catheter Insertion

- Infants and older = 8 Fr, newborns = 5 Fr
- Lidocaine for boys \geq 4 years old
- "Down Angle" in $\hfill \square$
- Gentle forward pressure at sphincter in \mathcal{J}
- If cath in vagina, leave in and place another

Cyclic Study

- \geq 2 cycles of filling and voiding
 - Age < 1 year old</p>
 - Febrile UTI (presumed pyelonephritis)
 - US showing dilated IRCS and/or ureter
 - Marked discrepancy in renal size ? scarring
 - VUR on prior study (15% more VUR)

Bladder Volume

- Child < 1 y.o.: weight (in kg) x 7 = ____ mL
- Child > 1 y.o.: (Age + 2) x 30 = ____ mL
- Max limit = 2x calculated volume

> 2x bladder volume associated increased risk urinary retention

Oblique Images

VCUG – Importance of Correct ObliqueViews

Grading VUR

- Grade 1: ureter only
- Grade 2: renal pelvis
- Grade 3: renal pelvis, mild dilatation
- Grade 4: tortuous ureter
- Grade 5: tortuous ureter, severe dilatation

• IRR is added descriptor to any grade

Thickened Wall

Tips on checking G-Tube placement

- Positioning
- Contrast outline balloon IN stomach
- What if contrast only in duodenum?

Positioning for G tube check

2 images
≈ R decub positioning
• Tube parallel to table
■ Supine

Images - Normal

What about this G Tube?

Balloon in Pylorus or duodenal bulb

And This One?

Balloon in Stoma Tract

Tips on checking GJ-Tube Malfunction

- Possible malfunctions
 - Clogged
 - Fell out
 - Broken
 - Leaking from stoma
 - Formula is draining from G-port

Tips on checking GJ-Tube Malfunction

- Possible malfunctions
 - Clogged
 - Fell out
 - Broken
 - Leaking from stoma
 - Formula is draining from G-port

Fell Out and Replaced

GJ Advanced Too Much, Balloon in Duoden in Guilling in the second second

Formula is draining from G-port

- Possible etiologies
 - J port migrated into stomach
 - Communication J to G (???)
- What do you do? Inject J port

J Port Injection

Hole between J port and G port

Tips and Tricks Topics

- Child Life
- Contrast Agents
- Radiation Safety (Low Dose Fluoroscopy)
- Procedural tips & tricks
 - Videofluoroscopic Swallow Studies (VFSS or VSS)
 - Upper GI (UGI)
 - Small Bowel Follow Through (SBFT)
 - Contrast Enema
 - High Pressure Distal Colostogram (for preop Imperforate Anus)
 - Voiding Cystourethrogram (VCUG)
 - Check G-tube or GJ-tube

