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The clinical imaging modalities available to investigate pediatric pulmonary conditions such as bronchopulmonary dysplasia, cystic fibro-
sis, and asthma are limited primarily to chest x-ray radiograph and computed tomography. As the challenges that historically limited the
application of magnetic resonance imaging (MRI) to the lung have been overcome, its clinical potential has greatly expanded. In this review
article, recent advances in pulmonary MRI including ultrashort echo time and hyperpolarized-gas MRI techniques are discussed with an
emphasis on pediatric research and translational applications.
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INTRODUCTION
P ulmonary morbidity in infants and young children
may arise from many sources: preterm birth (eg,
bronchopulmonary dysplasia [BPD]), congenital

defects such as congenital diaphragmatic hernia (CDH),
genetic conditions such as cystic fibrosis (CF) which is now
diagnosed at birth, and multitudinous airway obstruction such
as asthma. Chest x-ray radiographs, often the first line of radio-
logical inquiry to assess acute morbidity, are fast and easily
deployable in the clinic; however, the modality lacks tomo-
graphic resolution. When higher precision is needed, chest x-
ray computed tomography (CT) may be ordered; however,
the modality is used sparingly in young patients, in part due to
the need for sedation or anesthesia. Further, ionizing-radiation
exposure remains a consideration for sensitive patients such as
infants, immunocompromised patients, and children with
chronic morbidities who may need many CT scans through-
out their lifetime (1�3). With a mean lung dose of »10 mGy
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per chest CT for patients under 5 years old, it has been pro-
jected that one radiation-induced solid cancer will result from
every »360 and every »1200 chest CT scans for girls and
boys, respectively (2). Though these risk assessments remain
the subject of debate and need reevaluation in light of newer
low-dose CT protocols, alternative modalities that are free of
ionizing radiation would greatly expand the applications of
imaging for longitudinal assessment of pediatric lung disease to
study the natural history of pulmonary conditions that are
poorly understood. Furthermore, there is additional opportu-
nity for quantitative imaging to serve as a novel biomarker to
evaluate individual patients’ therapeutic response and for clini-
cal trials of new therapeutics—especially in situations where
patient numbers may be inherently small (eg, rare genotypes
of CF and rare-lung diseases).

Magnetic resonance imaging (MRI), which is nonioniz-
ing and tomographic, is a strong candidate to fill this need;
as the limitations that once hindered the clinical applica-
tion of pulmonary MRI are overcome (ie, now submilli-
second echo times [TE] that compensate for the fast T2*
decay and acquisition strategies that are robust to cardiore-
spiratory motion), MRI is experiencing a renaissance as a
viable modality for imaging the lungs. In this review,
recent developments in the pediatric applications of pul-
monary MRI are discussed, including results presented at
the 2017 International Workshop on Pulmonary Imaging,
with particular focus on ultrashort echo time (UTE) and
hyperpolarized-gas MRI techniques for assessing structural
and functional pathologies of pediatric lung diseases.
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ULTRASHORT ECHO TIME MRI

Historically, MRI has not been used to image lung structure
due to several challenges, including the inherently low pro-
ton density in lung parenchyma (»20% that of soft tissues in
adults) (4) and the short T2* relaxation time in pulmonary tis-
sues (»0.5�3 ms at typical field strengths) (4�8); these con-
straints historically have led to pulmonary MR images that
contain little to no lung signal. Further, in general MRI is
time-inefficient compared to other standard modalities, mak-
ing it more susceptible to respiratory/cardiac motion and
bulk-motion artifacts (9), which are especially prevalent in
noncompliant subjects such as infants and young children.

These challenges are being overcome by technical
development, and traditional proton MRI is emerging as a
viable modality for structural lung imaging in infants and
children, the former of which are arguably the most diffi-
cult patient population to image (10). Recently, changes
in lung volume were assessed between fetal and postnatal
imaging in infants with CDH, as were differences in lung
growth between the ipsilateral and contralateral lungs after
postnatal diaphragm repair (11). Faster growth in the con-
tralateral lung versus ipsilateral was reported, and increased
weight gain was associated with increased ipsilateral lung
growth. Walkup et al recently demonstrated initial suc-
cesses in quantitatively differentiating between neonates
with and without BPD (12). Additionally, global morphol-
ogy and perfusion scores from MRI were as sensitive as
lung clearance index (LCI) in detecting response to antibi-
otic therapies in CF patients (13). However, conventional
Cartesian sequences as used in the previous studies are still
susceptible to the challenges of subject motion and short
spin relaxation times, due to TE values that are often lon-
ger than the short T2*, and thus cannot effectively visualize
short-T2* tissues (ie, nonfibrotic parenchyma) in the lung.
Therefore, the future of pulmonary MRI likely lies with
sequences that are more robust to motion and implement a
shorter TE value.

Recent, widespread development in radial/spiral UTE MR
acquisition sequences for pulmonary imaging have allowed for
progress beyond conventional Cartesian acquisitions (14�16).
These sequences allow for near-immediate data acquisition
after radio-frequency (RF) excitation of the nuclear spins,
which provides an obvious advantage for short-T2* species
such as lung tissue. The lung also has a relatively long T1 (»1
second at 1.5 T) (17,18), so when UTE acquisitions are com-
bined with small flip angles, UTE images with normalized
lung intensities can provide a CT-like proton-density regime
(19), which allows for improved quantification. While CT
attenuation can be converted directly to volumetric density
(from Hounsfield units to g/cm3), signal intensity from the
lung parenchyma in UTE images must first be normalized to
the intensity of soft tissue to perform similar quantitative den-
sity analysis. Recent work on neonatal imaging has demon-
strated that UTE MRI and CT provide similar lung
parenchymal-tissue quantification and similar radiological reads
2

in pathological regions containing, for example, cysts, ground
glass opacities, fibrous/interstitial abnormalities, and consolida-
tions (20). Such parenchymal-density quantification via MRI
may be particularly important for chronically diseased children
who may need serial imaging; quantification provides an
objective means of assessing disease progression.

In addition to a parenchymal proton-density regime,
UTE MRI provides additional advantages related to sub-
ject motion, which is a major consideration in light of
both the longer exam times of MRI relative to CT and
also the poor subject compliance in pediatric populations.
Due to oversampling near the center of k-space,
radial sequences are more robust to motion than Cartesian
sequences (21). In addition, radial UTE MRI has inherent
self-navigation via the k-space center that allows for
retrospective tracking of bulk motion; data acquired dur-
ing noncompliant intervals can be discarded, and images
with diagnostic quality can be reconstructed from the
remaining quiescent data (19). Further, this self-navigation
allows for retrospective respiratory gating (22�24). Data
acquired from a free-breathing neonate can be binned and
reconstructed into representative end-expiration and end-
inspiration frames without breath-holds (Fig 1) (25), which
may be important in assessing tidal volumes, regional lung
compliance, ventilation mapping, and hyperinflation in
certain conditions such as BPD, or diaphragmatic function
before and after operative repairs in patients with CDH.
The ability to perform respiratory gating in a free-breath-
ing infant is highly beneficial, as rapid respiratory tracking
in neonates has been challenging historically (19).
This inherent motion-tracking technique is very important
for a noncompliant neonatal and infant populations
because it obviates the necessity of sedation/anesthesia—a
clear advantage over CT given the rising concerns over the
effects of anesthesia in children (26).

UTE MRI also performs comparably with CT in pediatric
CF patients to evaluate early disease. Recent studies have
demonstrated better agreement between MRI and CT with
radial UTE sequences (such PETRA, or pointwise encoding
time reduction with radial acquisition) than with conven-
tional T1- or T2*-weighted sequences (16), and additionally,
agreement between different MRI scoring systems for CF
(27). Dournes et al demonstrated submillimeter 3D MRI of
the airways of pediatric and young adult CF patients using
PETRA and found good agreement between CT and
PETRA using the Helbich-Bhalla scoring as compared to
conventional sequences (28). Roach et al recently demon-
strated comparable disease detection in »1�4-year-old CF
patients (Fig 2) and a significant correlation between CT-
and UTE MRI-derived scores in this young population
(p < 0.001) using previously validated CF scoring systems for
CT and UTE MRI (29). The results of these studies support
the integration of UTE MRI into routine clinical exams for
more comprehensive evaluation of early CF lung disease.

Pulmonary MRI has the potential to deepen our under-
standing of neonatal and pediatric lung diseases and their



Fig. 1. Coronal views of 3D UTE MR images in a neonatal control
patient demonstrating ungated reconstructions (A) and retrospec-
tively respiratory-gated reconstructions at 50% and 25% accep-
tance windows for end-expiration (B and D) and end-inspiration (C
and E). The boxes indicate a region of lung-diaphragm transition,
and the arrows indicate the inferior vena cava, the movement of
which is more finely resolved in the 25%-windowed images. A tidal
volume measurement—not easily assessed in infants by any clinical
means—is measured via the segmentation of these images.
Reprinted from Ref (19) “Retrospective respiratory self�gating and
removal of bulk motion in pulmonary UTE MRI of neonates and
adults,” Nara S. Higano, Andrew D. Hahn, Jean A. Tkach, Xuefeng
Cao, Laura L. Walkup, Robert P. Thomen, Stephanie L. Merhar, Paul
S. Kingma, Sean B. Fain, and Jason C. Woods, Magnetic Resonance
in Medicine, 2017, Volume 77, pages 1284�1295, with permission
from John Wiley and Sons. MR, magnetic resonance;UTE, ultrashort
echo time.

Fig. 2. Slice-matched comparison of axial x-ray CT (left column)
and UTE MR (right column) images of infants with cystic fibrosis and
a control (ages 33�47 months old), demonstrating how both CT and
UTE MRI can visualize CF pathology: bronchiectasis (1), ground-
glass opacity (2), bronchial-wall thickening (3), mucus plugging (4),
consolidation (5), and air trapping (6). Anesthesia-induced atelecta-
sis is circled in the blue. Reprinted from Ref (29) with permission of
the American Thoracic Society. Copyright 2017 American Thoracic
Society. David J. Roach, Yannick Cr�emillieux, Robert J. Fleck, Alan
S. Brody, Suraj D. Serai, Rhonda D. Szczesniak, Stephanie Kerla-
kian, John P. Clancy, and Jason C. Woods, 2016, “Ultrashort Echo-
Time Magnetic Resonance Imaging Is a Sensitive Method for the
Evaluation of Early Cystic Fibrosis Lung Disease”, Annals of
the American Thoracic Society Volume 13, Issue 11, pages
1923�1931. Annals of the American Thoracic Society is an official
journal of the American Thoracic Society. CF, cystic fibrosis; CT,
computed tomography; MR, magnetic resonance; UTE, ultrashort
echo time. Color version of figure is available online.

ARTICLE IN PRESS
Academic Radiology, Vol&, No&&,&& 2018 PEDIATRIC PULMONARY MAGNETIC RESONANCE IMAGING
time-courses. BPD is a common and serious pulmonary com-
plication of premature birth, but the underlying pathology of
the disease, its trajectory over time, and clinical outcomes rel-
ative to initial condition are not well characterized. Recent
work with radiological scoring of UTE and short-TE gradi-
ent echo MRI of neonatal patients with BPD has demon-
strated that structural MRI in early life has predictive
capability in identifying preterm infants at higher risk for
respiratory morbidities; these preliminary results therefore
support the wider implementation of early-life MRI as a pre-
dictor of disease trajectories (30,31). Pulmonary UTE MRI
has the potential to play a vital role in determining prognosis,
evaluating efficacy of individualized therapies, and informing
clinical management of neonatal and pediatric patients, and
importantly can be implemented serially without requiring
ionizing radiation, sedation, or anesthesia.
OTHER 1H MRI TECHNIQUES

While this review focuses more on UTE and hyperpolarized-
gas techniques, important progress also has been made using
oxygen-enhanced proton MRI and Fourier-decomposition
techniques; to date more progress has been reported in adults
than pediatric populations, but both of these techniques have
strong translational potential in pediatrics and could provide
important functional information (ie, regional ventilation and
perfusion) in conditions like BPD and CDH. Oxygen-
enhanced techniques exploit the relationship between the
3
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lung’s T1 relaxation and alveolar partial pressure of O2; under
hyperoxic conditions, the T1 of the lungs is shorter relative to
normoxia due to the increased concentration of paramagnetic
O2 in the alveolar airspaces. Difference maps are generated
from two T1-weighted image sets acquired under normoxic-
(21% O2) and hyperoxic- (100% O2) breathing conditions,
and differences in signal intensity (a maximum of about 6%)
are attributed to ventilation (32,33). Kruger et al demon-
strated using a 3D-radial UTE pulse sequence to acquire oxy-
gen-enhanced images in healthy adult subjects (34), and
recently, this approach was used to perform oxygen-
enhanced MRI in adults with asthma and CF and demon-
strated smaller signal-intensity enhancements in these disease
groups relative to controls (35).

Fourier-decomposition MRI began with the realization
that in a continuous proton acquisition over many heartbeats
and breaths, images could be reconstructed with Fourier
components at the breathing frequency and heart rate sepa-
rately, providing qualitative images of ventilation and perfu-
sion, respectively, without contrast agents or respiratory
gating (36). Initial criticisms focused on the lack of quantita-
tion and the fact that nonlung tissue provided ventilation sig-
nal because there was respiratory-related movement in the
liver, for example. Recent work has focused on quantitative
analysis; Kjùrstand et al reported using the zero-frequency
image from the Fourier analysis as a baseline for ventilation
quantification in healthy adult subjects and those with lung
cancer (37). While most clinical Fourier-decomposition
MRI studies to date have been performed in adults and are
beyond the scope of this review (the interested reader is
directed to Kjùrstand et al (38)), the technique has been
reported in pediatric CF patients and was found to provide
equivalent perfusion information to dynamic contrast-
enhanced MRI but without the use of gadolinium (39).
HYPERPOLARIZED-GAS MRI

Use of hyperpolarized noble gases (eg, 3He or 129Xe) as an
inhaled contrast agent for MRI of the lung is not a novel
technique; over the past 30 years, hyperpolarized-gas MRI,
primarily with 3He due to higher polarizability, has enjoyed
wide research success in a range of adult lung diseases includ-
ing asthma and chronic obstructive pulmonary disease
(COPD) (40�43). The clinical accessibility of these techni-
ques, however, has been stunted by several historical factors
including the increasing scarcity of 3He and intellectual-
property claims (44,45). As a result, most of the hyperpolar-
ized-gas MRI research has emerged from only a handful of
institutions. In the last 10 years, rapid development and com-
mercialization of polarizer technology (46�48) has allowed
the less scarce 129Xe to rise as a viable alternative to 3He, and
perhaps for the first time in its history, hyperpolarized-gas
MRI sits on the precipice of widespread clinical translation.

While in-depth reviews of hyperpolarized-gas physics and
translational applications can be found elsewhere (25,49�51),
there are three broad categories of hyperpolarized-gas MRI
4

techniques: (i) static ventilation imaging, which visualizes
regions in the lung airspaces filled by the inhaled gas during a
breath hold; (ii) restricted-diffusion imaging, which uses dif-
fusion-sensitizing gradients to measure how free Brownian
motion of gas atoms is restricted by parenchymal tissue walls;
and (iii) dissolved-phase imaging, which capitalizes on the
solubility of 129Xe in tissues and blood to measure gas transfer
across the blood-gas barrier and uptake by red blood cells.
Each of these methods plays into the ability of hyperpolarized
gases to assess both the obstructive and restrictive components
of lung disease, and recently several groups have expanded
their hyperpolarized-gas MRI research efforts to include
infants and young children.

In ventilation images, regions of the lung that are
obstructed will appear darker than the signal mean; these so-
called “ventilation defects” have been observed and quanti-
fied in numerous adult lung diseases including asthma and
COPD. Koumellis et al used dynamic hyperpolarized 3He
ventilation MRI to quantify regional airway obstruction in a
cohort of CF patients aged 6�15 years old and reported
good correlation with forced expiratory volume in 1 second
(FEV1), a global lung function measurement from spirome-
try, which in this cohort corresponded to primarily
upper-lobe obstruction (52). This regional information is the
greatest advantage of hyperpolarized-gas MRI techniques
over traditional pulmonary function tests. Recently, Thomen
et al reported regional ventilation deficits in young CF
patients (ages 8�16 years old); importantly, 129Xe ventilation
defects were observed even in CF patients with mild disease
and normal FEV1, and quantification of these defects differ-
entiated CF patients from age-matched controls where FEV1

could not, supporting the increased sensitivity of hyperpolar-
ized 129Xe MRI compared to spirometry (53). Recently,
Kanhere et al demonstrated a strong correlation between LCI
as measured with multiple-breath N2 washout and hyperpo-
larized 129Xe ventilation defect percentage, suggesting that
both techniques assess similar pathophysiologic characteristics
of CF and opening the door for future multiple-breath wash-
in and wash-out 129Xe MR imaging to investigate the tem-
poral dynamics of ventilation (54).

Airway obstruction may also arise from elastic-recoil mis-
match between inspiration and expiration, as seen as air trap-
ping and emphysema typical of COPD; while emphysema is
not a common pediatric diagnosis, emphysema-like airspace
enlargement has been noted in CT scans of children and
young adults with CF and BPD (55�57), and this enlarge-
ment can be quantified via an apparent diffusion coefficient
(ADC) measured with restricted-diffusion hyperpolarized-gas
imaging. A recent study performed hyperpolarized 3He
restricted diffusion MRI in a small cohort of young adult
CDH patients and reported significantly elevated ADC con-
sistent with enlarged alveolar airspaces in the ipsilateral lung
relative to the contralateral lung. 3He ventilation MRI also
found ventilation defects in the ipsilateral lung, in addition to
smaller ventilated lung volume than the contralateral lung,
suggesting some obstructive component to CDH (58). While



Fig. 3. Maps of the root-mean-square diffusion length (xrms), a
measurement of alveolar-airspace size) of hyperpolarized 3He in four
pediatric subjects (9-10 years old). In this study, children with a his-
tory of wheezing illness with human rhinovirus (HRV) infection in
early childhood (Subjects C and D) had smaller airways as compared
to those who did not (Subjects A and B). Reprinted from Ref (59),
2013 with permission from Elsevier.
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these subjects were older (median age 29 years old), the
results speak to the ability of hyperpolarized-gas MRI techni-
ques to assess both the microstructural and functional abnor-
malities in congenital disorders of the lung such as CDH. In
childhood asthma, Cadman et al reported a greater degree of
hyperpolarized-3He restricted gas diffusion and ventilation
deficits in children aged 9�10 years with asthma compared
to those without asthma, suggestive of relatively smaller alve-
olar airspaces in the former; furthermore, asthmatic children
with a history of wheezing illness with rhinovirus infection
before age 3 had higher 3He ventilation defect scores and
lower diffusion length compared to asthmatic children who
did not (Fig 3), linking wheezing in early childhood, a
known risk factor, to a microstructural biomarker of the alve-
olar airspaces (59). Recently, Fishman et al demonstrated that
alveolar depth as measured with 3He diffusion MRI
correlated with lung lifespan in a small group of pediatric
lung-transplant recipients, ie, patients whose lungs had a
more shallow alveolar depth had a negative outcome (death
or retransplantation) sooner than those with greater alveolar
depth, supporting hyperpolarized-gas MRI as a means of pre-
dicting outcomes for lung-transplant patients and as an aid for
lung selection for transplantation (60).

One of the largest challenges of extending hyperpolarized-
gas MRI methods down to the neonate and infant is the
inhalation and breath-hold of the hyperpolarized gas, which
in a compliant pediatric subject simply would be practiced
and coached. Using a pediatric-sized bag valve mask and a
rapid 2D-interleaved spiral pulse sequence, Altes et al at Uni-
versity of Virginia presented a proof-of-concept study dem-
onstrating the feasibility of hyperpolarized 3He MRI in
nonsedated children as young as 2 months old. 3He ventila-
tion defects were observed in a 2-month-old prematurely
born infant, two CF patients (10 and 14 months old), and
two 3-year olds with asthma (Fig 4) (61). In addition to func-
tional abnormalities, Higano et al reported alveolar micro-
structural changes observed via hyperpolarized 3He diffusion
MRI of explanted neonatal and infant lungs. While most of
the samples were from healthy infants without known pul-
monary disease, in one case of filamin A deficiency (a rare
genetic mutation associated with diffuse lung disease (62)),
3He ADC measurements were noticeably larger than those of
the control samples, indicative of abnormally enlarged alveo-
lar airspaces; these ADC measurements correlated signifi-
cantly with measurements from quantitative histology (63).

These hyperpolarized-gas MRI studies demonstrate that
the microstructural and functional abnormalities of pediatric
conditions such as BPD, CDH, asthma, and CF begin in very
early life and that there is great potential for hyperpolarized-
gas MRI to monitor disease progression during early ages
when spirometry and other pulmonary function tests are not
feasible or reproducible, to individualize care management,
Fig. 4. Hyperpolarized 3He ventilation MR
images in three nonsedated, nonrestrained
young children demonstrating early ventilation
deficits (arrows) associated with premature
birth, CF, and asthma. Figure is a composite of
images reprinted from Ref (61), Clinical Imag-
ing, 2017, Volume 45, pages 105�110,
“Hyperpolarized helium-3 magnetic resonance
lung imaging of nonsedated infants and young
children: a proof-of-concept study”, Talissa A.
Altes, Craig H. Meyer, Jaime F. Mata, Deborah
K. Froh, Alix Paget-Brown, W. Gerald Teague,
Sean B. Fain, Eduard E. de Lange, Kai Rup-
pert, Martyn C. Botfield, Mac A. Johnson,
John P. Mugler (https://doi.org/10.1016/j.clini
mag.2017.04.004) with permission from Elsev-
ier under the Creative Commons license
(HYPERLINK" https://creativecommons.org/
licenses/by-nc-nd/4.0/). CF, cystic fibrosis;
MR, magnetic resonance.
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and perhaps even to predict outcomes for these children who
are likely to face lifelong pulmonary complications. While
hyperpolarized-gas MRI alone cannot discern the structural
etiology of a functional deficit (ie, if a regional ventilation
defect arises from mucus plugging or bronchiectasis), these
techniques may be used in conjunction with structural imag-
ing such as CT or UTE MRI to identify regional lung mac-
rostructural-functional correlates.
DISCUSSION

As lung MRI techniques with previous successes in adult
medicine are moved to younger populations, it is clear that
there is ample opportunity for MRI to revolutionize the
imaging and clinical management of pediatric pulmonary
conditions. While momentum and enthusiasm for pulmonary
MRI of infants and young children is growing, some chal-
lenges remain for broader clinical translation. For instance,
while UTE MRI is capable of very high 3D-spatial resolu-
tion, it will likely never meet or surpass the resolution achiev-
able with x-ray CT, and while CT will likely continue to be
the preferred modality for clinical assessments in the short
term, MRI will have an advantage for longitudinal studies of
pediatric lung conditions as accumulated ionizing-radiation
exposure is a nonissue with MRI.

For the imaging of particularly vulnerable patients, such as
neonates or those in intensive care units, scanner location can
be particularly important for logistics and safety. Thus, several
major pediatric hospitals are looking to add MRI capabilities
soon in or near their neonatal intensive care wards. Further,
all three major MRI-scanner manufacturers (ie, Philips, GE,
and Siemens) either have a UTE pulse sequence available or
plan to make one available soon, which will improve the
clinical translation of UTE methods for the pulmonary imag-
ing of all patient populations. Quantification of UTE images
will likely remain a tool for research studies until image proc-
essing and segmentation techniques are fully automated;
however, as clinician familiarity with UTE techniques
increases, reader interpretation will likely be sufficient in the
short term for clinical use.

Image processing is also a challenge for translating oxygen-
enhanced MRI techniques to pediatric populations since the
method requires two spatially registered image sets which
may be challenging to acquire in noncompliant patients, but
perhaps retrospective-respiratory gating strategies as reviewed
here may help overcome those challenges. One advantage of
oxygen-enhanced MRI to evaluate ventilation is that the
“contrast agent” is O2, and thus, unlike the hyperpolarized
gases, does not require a Food and Drug Administration
(FDA) Investigational New Drug (IND) application.

The major remaining hurdles to widespread translation of
hyperpolarized-gas MRI include polarizer access and FDA
approval—indeed, these have been the technique’s greatest
challenges for the past three decades. However, accessibility
to 129Xe polarizers is improving, and recently the 129Xe MRI
Clinical Trials Consortium has emerged as a resource for
6

groups interested in multisite clinical trials of hyperpolarized
129Xe MRI (64). 129Xe is already approved by the United
Kingdom’s Medicines and Healthcare products Regulatory
Agency, and as more studies are conducted to assess the sensi-
tivity of inhaled 129Xe gas, US FDA approval becomes more
likely, which will improve the accessibility and translation of
these techniques to the clinic.

In conclusion, pulmonary UTE and hyperpolarized-gas
MRI are poised to have large translational impact in the
clinical diagnosis and care management of pediatric lung
diseases by illuminating and quantifying regional structure-
function relationships within the lungs, with clear relation-
ships to outcomes.
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