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Abstract

Objective: Biallelic variants in RARS1, encoding the cytoplasmic tRNA syn-

thetase for arginine (ArgRS), cause a hypomyelinating leukodystrophy. This

study aimed to investigate clinical, neuroradiological and genetic features of

patients with RARS1-related disease, and to identify possible genotype-pheno-

type relationships. Methods: We performed a multinational cross-sectional

survey among 20 patients with biallelic RARS1 variants identified by next-

generation sequencing techniques. Clinical data, brain MRI findings and genetic

results were analyzed. Additionally, ArgRS activity was measured in fibroblasts

of four patients, and translation of long and short ArgRS isoforms was
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quantified by western blot. Results: Clinical presentation ranged from severe

(onset in the first 3 months, usually with refractory epilepsy and early brain

atrophy), to intermediate (onset in the first year with nystagmus and spasticity),

and mild (onset around or after 12 months with minimal cognitive impairment

and preserved independent walking). The most frequent RARS1 variant,

c.5A>G, led to mild or intermediate phenotypes, whereas truncating variants

and variants affecting amino acids close to the ArgRS active centre led to severe

phenotypes. ArgRS activity was significantly reduced in three patients with

intermediate and severe phenotypes; in a fourth patient with intermediate to

severe presentation, we measured normal ArgRS activity, but found translation

mainly of the short instead of the long ArgRS isoform. Interpretation: Variants

in RARS1 impair ArgRS activity and do not only lead to a classic hypomyelina-

tion presentation with nystagmus and spasticity, but to a wide spectrum, rang-

ing from severe, early-onset epileptic encephalopathy with brain atrophy to

mild disease with relatively preserved myelination.

Introduction

Hypomyelinating leukodystrophies are a heterogeneous

group of genetic white matter disorders resulting from a

significant and permanent deficit in myelin deposition

within the central nervous system.1 Since the description

of the first hypomyelinating leukodystrophy, Pelizaeus-

Merzbacher disease (PMD) in 18852 and its pathology in

1910,3 numerous disorders characterized by hypomyelina-

tion have been identified through MRI pattern recogni-

tion analysis,4 genetic linkage and more recently next

generation sequencing techniques.5,6 This combined

approach has resulted in the identification of a number of

genetic variants associated with hypomyelination, many

of which are individually so rare that the resultant pheno-

types are yet to be fully defined.1,5,7

Variants in the RARS1 gene have been previously

reported in 10 patients5–7 with a hypomyelinating

leukodystrophy (MIM 616140),7–9 each presenting with

nystagmus, ataxia and spasticity resembling PMD.

RARS1 encodes cytoplasmic arginyl-tRNA synthetase

(ArgRS), a monomeric enzyme in class 1 of the aminoa-

cyl-tRNA synthetase (aaRS) family, essential for protein

synthesis.8 ArgRS exists in a short and a long isoform,

both translated from the same transcript, with the short

isoform being translated from an alternative start codon

causing the absence of the N-terminal 72 amino acids in

the short isoform. This isoform is found free in the

cytosol,9 whereas the long isoform is found in a sub-

complex together with aaRS complex-interacting multi-

functional protein 1 (AIMP1) and glutaminyl-tRNA

synthetase (GlnRS), within a larger multisynthetase

complex of nine tRNA synthetases and three accessory

proteins in total.8

Although the exact mechanism(s) underlying

pathogenicity of RARS1 variants remain(s) unknown,

there is increasing evidence in other tRNA synthetase dis-

orders that aminoacylation errors contribute to cellular

dysfunction.10,11 However, whether aminoacylation is

impaired in RARS1-related hypomyelination, has not yet

been demonstrated yet. In this paper we report 20

patients with hypomyelination and RARS1 variants, 16

new and four reported previously,12 expanding the clinical

and neuroradiological presentation. In addition, ArgRS

activity was analyzed for four patients, confirming the

impact of RARS1 variants on aminoacylation.

Patients and Methods

Patients and data collection

We included 20 patients from 15 unrelated families and

multinational institutes. Four patients (P1–4) were pub-

lished previously.12 RARS1 variants were identified locally

by clinical next generation sequencing techniques (either

WES or WES with a filter for leukodystrophy genes,
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which included RARS1, a known disease gene) following

local procedures. After the identification of biallelic

RARS1 mutations by the referring centers, the Centre for

Childhood White Matter Diseases, Amsterdam was con-

tacted by the treating clinician, and clinical and radiologi-

cal data were retrospectively collected there. These data

were evaluated by LG and NW at the Centre for Child-

hood White Matter Diseases, Amsterdam. The study was

approved by the Institutional Review Board of VU

University Medical Centre and the participating institutes.

All patients/parents gave appropriate informed consent.

Enzyme assay

Aminoacylation was assessed by measuring ArgRS activity

in cultured fibroblasts of 4 patients. Fibroblast lysates (cy-

tosolic fraction) were incubated in triplicate at 37°C for

10 minutes in a reaction buffer containing 50 mmol/L

Tris buffer pH 7.5, 12 mmol/L MgCl2, 25 mmol/L KCl,

1 mg/mL bovine serum albumin, 0.5 mmol/L spermine,

1 mmol/L ATP, 0.2 mmol/L yeast total tRNA, 1 mmol/L

dithiothreitol, 0.3 mmol/L [15N2]-arginine, [15N]-valine

and [D2]-glycine. The reaction was terminated using tri-

chloroacetic acid. After sample washing with trichloroace-

tic acid, ammonia was added to release the labeled amino

acids from the tRNAs. [13C6]-arginine, [
13C]-valine and

[13C2,
15N]-glycine were added as internal standards and

the labeled amino acids were quantified by LC-MS/MS.

Intra-assay variation was <15%. Valyl-tRNA synthetase

and Glycyl-tRNA synthetase activity were simultaneously

detected as control enzymes.

Western blot

To confirm the presence of ArgRS protein in fibroblasts,

a western blot was performed. Cell pellets were resus-

pended in urea lysis buffer (10 mmol/L Tris HCl, 8 mol/

L urea, 100 mmol/L NaCl, pH 8.0). After DNA shearing

using a 29-gauge needle, protein concentration was deter-

mined and 30 µg of total protein were separated in a

12% stain-free SDS gel (Bio-Rad Laboratories, Hercules,

CA). Proteins were transferred onto a polyvinylidenfluo-

ride membrane (Bio-Rad, Hercules, CA) using a Trans-

Blot Turbo Transfer System (Bio-Rad). Immunodetection

was performed using a primary antibody (rabbit) directed

at ArgRS (PAS-30145, Thermo Fisher Scientific, Waltham,

MA) and a secondary anti-rabbit antibody (PO448, Dako,

Glostrup, Denmark). Immune complexes were detected

by enhanced chemiluminescence (Lumilight Plus), accord-

ing to the manufacturer’s specifications (Roche, Indi-

anapolis, IN). Images were acquired in a charge-coupled

device imager ChemiDoc XRS (Bio-Rad) using the Image

Lab software (Bio-Rad).

Results

Clinical characteristics

Detailed clinical characteristics are provided in Table S1.

Eighteen of the 20 patients presented in the first year of

life, 11/18 under the age of 3 months. Seven patients pre-

sented with delayed motor development, five with seizures

and one with nystagmus. The other five presented with

microcephaly (n = 2), irritability (n = 2) or failure to

thrive (n = 1). The two patients who had their first signs

after the age of 12 months presented with nystagmus and

frequent falls at age 3 years and with delayed language

and social development at age 2 years. Over time, 12

patients developed nystagmus, 13 spasticity, seven ataxia

and 10 epilepsy. Seizures were refractory to treatment in

eight of these 10 cases, the clinical picture suggesting

infantile epileptic encephalopathy. At the time of report-

ing five patients, all with disease onset before the age of

3 months, were deceased (aged 21–42 months).

Of the surviving 15 patients, 13 had intellectual disabil-

ity, ranging from mild to moderate (n = 6) to severe

(n = 7). Of the six patients who achieved walking, two con-

tinued to require support at their latest follow-up (P1, aged

11 years, and P3, aged 26 years), four were independently

mobile, and one became wheelchair dependent later in life.

The most mildly affected patient (P10) initially presented

aged 3 years with transient nystagmus and clumsiness, and

did not develop concerns regarding cognition and progres-

sive lower limb spasticity until the fourth and fifth decades.

Based on these findings, we classified clinical presenta-

tion as:

1 Severe (presenting in the first 3 months of life, and

usually with refractory epilepsy),

2 Intermediate (the classic hypomyelinating phenotype

resembling PMD and related disorders, with onset

within the first year of life, nystagmus and spasticity, but

sometimes with the ability to walk with support), and

3 Mild (with an onset around age 12 months and the

ability to walk without support).

This spectrum is a continuum: for example, P4 is an

example of a borderline patient between the severe and

intermediate form.

Radiological findings

MRI scans were available for 17 of the 20 patients: for

one patient (P6) no MRI was available, and for two

patients (P13 and P19), we had only selected images.

Detailed MRI findings are provided in Table S2 and Fig-

ures 1, 2. Throughout the cohort, T2-weighted images

demonstrated supratentorial white matter hyperintensity

with corresponding T1 hypointensity, in keeping with
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Figure 1. Demonstrating the spectrum of MRI findings in selected patients with RARS1. Axial T2-weighted and sagittal T1-weighted (P19, P5, P4,

P1, P20) and T2-weighted images (P17, P14), from the most to the least severely affected patient. The severely affected patients have early-onset

cerebral atrophy and, in patient 5, also cerebellar atrophy, in addition to abnormal T2 hyperintense signal of the cerebral white matter, indicating

myelin deficit. P19, the most severely affected patient, also has a simplified gyral pattern and a round, small cerebellum.
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myelin deficit. Some patients were too young to establish

a radiological diagnosis of hypomyelination, but even the

youngest patients showed deficient myelination.

Nine patients demonstrated some degree of early brain

atrophy; this corresponded with severe clinical presenta-

tion. P10 with a mild presentation also showed atrophy

at the age of 50 years; it is unclear over how much time

this had developed.

The most severely affected patient, P19, had a simpli-

fied gyral pattern in addition to hypomyelination and

brain atrophy (Figs. 1, 2A and B). There was no evidence

of cortical malformations in the remaining patients. One

of the patients, P15, had bilateral T2-hyperintense signal

in the ventrolateral part of the thalamus (Fig. 2C and D).

We did not find spinal cord abnormalities in the patients

we could assess this question.

RARS1 variants

Full details of the RARS1 variants identified within the

cohort are given in Table 1 and Figure 3. Five patients

were identified to have homozygous and 15 compound

heterozygous variants; six variants were previously

reported whilst 15 were novel. The most common variant

Figure 2. Additional findings beyond hypomyelination in RARS1 variants. (A and B) T2-weighted axial images of patient 1 in the neonatal period,

with simplified gyral pattern and thick posterior cortex. (C and D) Patient 15, at age 6 months, shows hyperintense T2-signal of the ventrolateral

thalamus (arrow).
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within our cohort was c.5A>G p.(Asp2Gly), a substitution

located at the very beginning of the N-terminal domain.

This variant was identified in seven of the 20 patients

(one homozygous, six compound heterozygous) and was

also described in two other published patients in a

homozygous form.13 All patients with this variant had an

intermediate or a mild (when homozygous) phenotype.

We ascertained other recurrent variants that were pre-

sent in more than one family: p.(Ser456Leu), reported

previously13 and present in P20; p.(Leu58Pro) present in

P7 and P14; p.(Cys32Thrfs*39) present in P3 and P19;

and several variants that affected the start codon (in four

patients). Arginine at position 512, located close to the

active center (Fig. 3), was affected in three unrelated fam-

ilies, all presenting with severe disease. Furthermore, other

variants affecting amino acids in close proximity to the

arginine binding site (in eight patients/six families) led to

severe phenotypes (Fig. 3), with the exception of

p.(Arg223His). The p.(Leu58Pro) variant, located close to

the interface with GlnRS (Fig. 3), was combined in one

family with p.(Asp2Gly) resulting in a mild phenotype, in

another family with p.(Leu597Pro) resulting in a severe

phenotype.

Several variants presumably affected translation of the

full-length protein. For example, in several families the

start codon was affected, resulting in (almost) absent

translation of the long isoform (as demonstrated in P4,

Fig. 3). These variants were also associated with a severe

phenotype.

Enzyme activity and isoform translation

ArgRS activity was significantly decreased in fibroblasts of

P1, P3, and P5 compared to controls (Fig. 3A). P5, with

Figure 3. ArgRS activity, isoform expression and RARS1 mutations (A) Activities of ArgRS, ValRS and GlyRS in fibroblasts of patients and controls,

indicating significantly reduced ArgRS activity in patients 5, 1, and 2 (patient order according to severity with P5 most severely affected, P1 and

P2 intermediately affected). (B) depicts a Western blot of ArgRS, with mainly a short transcript present in P4. (C) Is a model of ArgRS, GlyRS and

AIMP1, with variants leading to a mild presentation indicated in green, variants associated with a moderate presentation in blue and variants

causing a severe presentation in red. (D) Distribution of the variants (with the same color code as in (C) throughout the RARS1 gene. ArgRS,

arginyl-tRNA synthetase; GlyRS, Glycyl-tRNA synthetase; ValRS, Valyl-tRNA synthetase; AIMP1, aaRS complex-interacting multifunctional protein 1.
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a severe phenotype, had the lowest enzyme activity of the

three patients. In contrast, P4 showed ArgRS activity in

the range of the control, despite having a severe clinical

phenotype. Compared to controls, P1 and P3 showed a

faint band of the short ArgRS isoform; for P4, the main

isoform found was the short one, although a faint band

of the long ArgRS isoform was present as well (Fig. 3B).

Discussion

This study demonstrates the impact of biallelic RARS1

variants on neurodevelopment and confirms them as a

cause of hypomyelinating leukodystrophy, similar to the

hypomyelination seen in patients with variants in EPRS1

and DARS1, also coding for tRNA synthetases which are

part of the multisynthetase complex.14–16 Besides

hypomyelination, single patients with RARS1 variants

share neuroradiological abnormalities with EPRS1 patients

(ventrolateral thalamus involvement)14 and DARS1

patients (spinal cord involvement)15,16 although the latter,

described so far in one RARS1 patient17, is not present in

this cohort. We also confirm that the aminoacylating

function of ArgRS is impaired, with the most pronounced

reduction in a severely affected patient.

The study also sheds new light on the disease spectrum

associated with RARS1 variants. Beyond presenting as a

typical hypomyelinating leukodystrophy, a substantial

number of patients with RARS1 variants present with

early epileptic encephalopathy, the most severely affected

patient also displays a cortical folding abnormality. On

the other end of the spectrum, patients have mild disease,

even without significant myelin deficit, again reminiscent

of patients with DARS1 variants and late onset disease.15

Interestingly, patients with the severe phenotype resem-

ble early-onset grey matter disorders rather than primary

leukodystrophies: they have severe epilepsy and early-onset

(severe) cerebral atrophy, both hallmarks of neuronal dis-

orders. Patients with variants in QARS1, encoding GlnRS

which closely interrelates with ArgRS within the multisyn-

thetase complex, present with similar clinical signs.18 One

of the QARS1 variants disturbs the interaction between

GlnRS and ArgRS,18 and we assume this is also the case for

the ArgRS Leu58Pro variant, located at the ArgRS-GlnRS

interface. A similar severe presentation is seen in patients

with biallelic mutations in AARS119 and VARS1,20,21 and

also mutations in AIMP1 and AIMP2, affecting two of the

three scaffolding proteins of the multisynthetase complex,

lead to early-onset neuronal disorders.22,23

Thanks to this cohort of 20 patients, we are beginning to

understand the genotype-phenotype relationship.9 The

most frequent RARS1 variant ascertained, c.5A>G
p.(Asp2Gly), affects the second amino acid residue aspar-

tate, which is part of the 72 amino-acid N-terminal domain

and only present in the longer ArgRS isoform. It interacts

with the long N-terminal helix of AIMP1 and also affixes

the C-terminal core of GlnRS.18 The Asp2Gly variant most

likely leads to a mild or intermediate phenotype, as no

patients with this variant has the severe early-infantile phe-

notype and all but two patients with the mildest phenotype

are homozygous for this variant. In another study, this vari-

ant led to decreased levels of the longer ArgRS isoform in

fibroblasts of a homozygous patient,13 and also in our two

patients compound heterozygous for this variant, we could

observe a faint band for the shorter isoform in fibroblasts.

One patient (P4) carries a mutation affecting the start

codon c.1A>G in one allele, and shows mainly translation

of the short cytosolic ArgRS isoform. We hypothesize that,

due to this mutation, only the short and not the long iso-

form can be translated from the transcript of this allele, and

that the observed faint band of the long isoform results

from the transcript of the other allele. Interestingly, this

patient has a severe phenotype but normal ArgRS activity

in fibroblasts, in contrast to the other three patients with

reduced ArgRS activity. Since the long and short ArgRS iso-

forms exhibit similar enzyme activities in vitro,9 it is

possible that the short isoform, the main isoform present in

fibroblasts of this patient, contribute to the enzyme activity.

As a consequence, normal ArgRS activity in vitro does not

necessarily reflect aminoacylation in vivo, for which the

long isoform is needed to form the multisynthetase

complex.

The disparate clinical manifestations seen in this cohort

– a severe neuronal phenotype on one hand and a typical

leukodystrophy (hypomyelination) phenotype on the

other – raise questions as to (1) whether the hypomyeli-

nation is a result of primary neuronal dysfunction instead

of primary oligodendrocyte dysfunction; (2) whether

mildly reduced ArgRS activity only affects oligodendro-

cytes while more severely reduced activity (also) affects

neurons; and (3) whether different variants disturb differ-

ent protein functions. It is postulated that the short

cytosolic form of ArgRS, unaffected by some RARS1-vari-

ants, is involved in the ubiquitin-dependent N-end rule

pathway of protein degradation by providing Arg-tRNA

as a substrate for arginyl-tRNA transferase.24 N-terminal

arginylation targets certain proteins for controlled degra-

dation, including elimination of misfolded proteins.24

Defective protein homeostasis, due to impaired

ubiquitination or ufmylation, is associated with several

neurodegenerative disorders, including early-onset

encephalopathies.25–28 Therefore, defective ArgRS might

hamper protein degradation in addition to affecting

protein synthesis, thereby contributing to a primarily

neuronal phenotype. Understanding these possible path-

way(s) to disease manifestations is essential before

embarking on approaches to treatment.
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